Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As Grid problem solving flows smoothly

22.12.2005


Computational Fluid Dynamics, a technique that can be used to measure the flow of water around a ship’s hull or the exhaust flow of a car engine, requires complex, processing-intensive software. It is therefore a key candidate to benefit from Grid computing, as the FlowGrid project proved.



By developing the architecture to run Computational Fluid Dynamics (CFD) applications on the Grid, the IST programme-funded initiative has provided industrial and academic users with the ability to solve complex problems without the need to invest in the costly parallel computing infrastructure that would otherwise be necessary.

“There is a vast market of users out there who only need to use CFD applications occasionally and it makes no sense for them to acquire high performance processing systems,” explains project manager Norberto Fueyo at the University of Zaragoza in Spain.


Such users could be architects looking to calculate the wind flow around a building, a train manufacturer trying to determine the aerodynamics of a new design or even a medical researcher attempting to simulate blood pressure in an artery.

“With Grid computing they can acquire the processing power they need when they need it and only for how long they need it to run their calculations,” Fueyo says.

The FlowGrid architecture provides them with that ability through Grid middleware that allows users to find available clusters of processors, run their calculations and obtain results in potentially less time than with parallel systems. Because CFD problems are typically broken down into a mesh of cells to model fluid dynamics, the added resources of the Grid also permit greater precision in the calculations.

“More cells require more resources but also result in more precise output,” Fueyo notes. “The scalability of the Grid allows a user to run calculations on one million cells or tens of millions of cells - much more than most parallel computing systems can handle.”

It is also considerably cheaper. A cost analysis carried out by the project concluded that it would cost a typical industrial user as little as 10 to 20 euros to solve a standard CFD problem over the Grid, compared to the thousands it costs to buy high performance processors.

The architecture was evaluated in four test cases run by the consortium’s four industrial users who employed it to simulate train aerodynamics, ship hydrodynamics, diesel exhaust and gas combustion. Many of the partners are continuing to use the architecture, Fueyo notes, and one of them, British company Symban, is currently in the process of commercialising it.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/79857

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>