Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ferroelectric Films: Cheaper, Smaller and Less Energy Requiring Components for Laptops and Mobile Phones

19.12.2005


Chalmers University of Technology in Gothenburg, Sweden, has together with five European partners started a three year project, Nanostar, for mastering of nanostructured multifunctional ferroelectric films for low cost mass production of microwave devices.



The project costs are 4.1 million Euros of which 2.8 million is supported by the European Commision in the 6th framework programme while the rest is paid for by the partners. Coordinator of the project is Professor Spartak Gevorgian at Chalmers Department of Microtechnology and Nanoscience, MC2.

The main focus will be on the development of theory, fabrication processes and device demonstrators for functional validation of nanostructured multifunctional ferroelectric films and components applicable in microwave communication.


Ferroelectrics considered in the project are complex metal oxide dielectrics and barium and strontium titanat, characterized by high dielectric permittivity.

The dielectric permittivity of these materials is electric field dependent, allowing development of voltage controlled capacitors (varactors) and a large number of tuneable microwave components for microwave applications.

Professor Spartak Gevorgian: "The devices based on these films offer a substantial reduction of cost, sizes and power consumption, i.e. features useful for power hungry microwave systems, especially in portable/handheld devices such as mobile phones, laptops etc. They can also be applied in adaptable/reconfigurable microwave systems consisting of a large number of tuneable components, such as large phased array antennas and tuneable metamaterials.

The innovations also include nanostructured ferroelectric films with engineered, radically new dielectric properties, and exploitation of new physical effects in nanostructured ferroelectrics for applications in devices with new functions. Further improvement of properties of ferroelectric films and devices in terms of reduction of the temperature dependence, dielectric hysteresis, losses, noise and parameter drift along with increased long term stability and tuneability are included in the project.

"Demonstrators will be developed for microwave communications applications, but they will also be potentially useful for optoelectronics and sensor applications. Tuneable TFBARs, which have no analogues in the electronics industry, are one of the typical new devices with new functions to be considered", says Spartak Gevorgian.

The partners in the project are: Chalmers University of Technology, Gothenburg, Sweden; Philips Electronics Nederland B.V, Eindhoven, The Netherlands; Ericsson AB, Mölndal, Sweden; Temex Filters (SAW) Business Unit of Temex; Sophia Antipolis, France; Swiss Federal Institute of Technology, Lausanne, Switzerland; and Electrotechnical University, St. Petersburg, Russia.

Jorun Fahle | alfa
Further information:
http://www.nanostar-eu.com

More articles from Information Technology:

nachricht Efficient time synchronization of sensor networks by means of time series analysis
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>