Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ferroelectric Films: Cheaper, Smaller and Less Energy Requiring Components for Laptops and Mobile Phones

19.12.2005


Chalmers University of Technology in Gothenburg, Sweden, has together with five European partners started a three year project, Nanostar, for mastering of nanostructured multifunctional ferroelectric films for low cost mass production of microwave devices.



The project costs are 4.1 million Euros of which 2.8 million is supported by the European Commision in the 6th framework programme while the rest is paid for by the partners. Coordinator of the project is Professor Spartak Gevorgian at Chalmers Department of Microtechnology and Nanoscience, MC2.

The main focus will be on the development of theory, fabrication processes and device demonstrators for functional validation of nanostructured multifunctional ferroelectric films and components applicable in microwave communication.


Ferroelectrics considered in the project are complex metal oxide dielectrics and barium and strontium titanat, characterized by high dielectric permittivity.

The dielectric permittivity of these materials is electric field dependent, allowing development of voltage controlled capacitors (varactors) and a large number of tuneable microwave components for microwave applications.

Professor Spartak Gevorgian: "The devices based on these films offer a substantial reduction of cost, sizes and power consumption, i.e. features useful for power hungry microwave systems, especially in portable/handheld devices such as mobile phones, laptops etc. They can also be applied in adaptable/reconfigurable microwave systems consisting of a large number of tuneable components, such as large phased array antennas and tuneable metamaterials.

The innovations also include nanostructured ferroelectric films with engineered, radically new dielectric properties, and exploitation of new physical effects in nanostructured ferroelectrics for applications in devices with new functions. Further improvement of properties of ferroelectric films and devices in terms of reduction of the temperature dependence, dielectric hysteresis, losses, noise and parameter drift along with increased long term stability and tuneability are included in the project.

"Demonstrators will be developed for microwave communications applications, but they will also be potentially useful for optoelectronics and sensor applications. Tuneable TFBARs, which have no analogues in the electronics industry, are one of the typical new devices with new functions to be considered", says Spartak Gevorgian.

The partners in the project are: Chalmers University of Technology, Gothenburg, Sweden; Philips Electronics Nederland B.V, Eindhoven, The Netherlands; Ericsson AB, Mölndal, Sweden; Temex Filters (SAW) Business Unit of Temex; Sophia Antipolis, France; Swiss Federal Institute of Technology, Lausanne, Switzerland; and Electrotechnical University, St. Petersburg, Russia.

Jorun Fahle | alfa
Further information:
http://www.nanostar-eu.com

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>