Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cheaper mobile phones or GPS and with enhanced performance

29.11.2005


In his PhD thesis the Pamplona engineer, Francisco Falcone Lanas, has put forward various structures based on what are known as left-handed metamaterials, materials that can be used to make smaller mobile phones, aerials or GPS and which have better specifications and performance. This is the first PhD defended in the world on applications of left-handed metamaterials.



Photonic crystal devices

The research undertaken by Francisco Falcone in his PhD involved analysing the application of metamaterial structures in conventional high-frequency planar technology.


For his thesis Francisco Falcone analysed two types of structure. One with photonic crystals which have good control of the signal but are not greatly efficient with respect to size. These are known as Electromagnetic Bandgap (EBG) structures. Taking these as a basis, Francisco Falcone put forward a number of microstrip technology devices, etching a periodic pattern on their planar surfaces. This is the most significant difference in these proposed, smaller and more compact unidimensional structures, compared to the previous, bidimensional ones. Moreover, they have experimented with the introduction of a resonator in planar technology.

First worldwide

It is, nevertheless, it is with the second type of structure where the results of the research team at the Public University of Navarre are more spectacular. What are known as left-handed metamaterials involve materials which have curious electromagnetic properties and which are not found naturally, i.e. they are artificially generated media.

In this part of the research Francisco Falcone synthesised left-handed materials in planar technology by using Split Ring Resonators (SRR) together with a medium of fine metallic wires. In this respect we can say that we have achieved the very first implementation worldwide of a low loss LHM metamaterial. An evolution of this device was the use of a new particle therein - which we call complementary SSR - in which the role of paper and metal is interchanged.

In this way and applying classical metamaterial concepts, we obtained devices with extremely low losses. Our proposal was based on the introduction of particles in planar technology, i.e. their integration into the circuit. In fact, we have managed to obtain the devices with the lowest losses ever obtained worldwide. We were the first to propose this phenomenon and the discovery received recognition on being published in the prestigious scientific magazine, Physical Review Letters.

The advantage of its use is that it enables the making of a series of circuits that otherwise would be impossible and, moreover, these give quite an optimal response in that they have few and very low losses.

This PhD puts forward the potential use of these kinds of structures for devices such as filters, couplings and aerials for 2nd, 3rd and 4th generations mobile communications systems such as satellite systems and WLAN. But, above all, they are low cost structures and very easy to manufacture.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Information Technology:

nachricht An AI that makes road maps from aerial images
18.04.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Beyond the clouds: Networked clouds in a production setting
04.04.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>