Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Morphome project researching proactive computing in homes

25.11.2005


Design of smart homes takes into consideration technology as well as the wishes, needs and fears of residents.

The research results of Research Director Frans Mäyrä’s Morphome project confirm that test subject perceptions of computer technology are often critical or negative. The idea of computers playing a central role in the home is anathema to many. Computers are seen as being complicated and unreliable, so no one would readily submit key household functions to their control. Conversely, there is a great deal of curiosity in computer technology as well as interest in new applications. ”Test subjects listed, for example, their wishes for a small infoscreen in the foyer which, as they were leaving the house, would alert them if a potentially dangerous electrical appliance was left on or they had forgot their keys,” explains Mäyrä. The Academy of Finland-funded project has created models for use in the design of future smart homes and compiled data on the acceptibility of proactive technologies as a part of everyday life.

Smart homes can advantage proactive technology, which the home uses to respond to the wishes of its residents and adjust household functions accordingly. For example, locks, lighting, climate control or various appliance functions can be seamlessly adapted to the time of day, day of the week, or resident wishes. The more commonplace this type of technology becomes, the more important is the need to understand the needs, knowledge, wishes and fears that people associate with its applications.



How new technologies look determines whether they will be accepted in the home

The multidisciplinary Morphome project studied, among other things, the control of light and sound as part of the proactive experience. Independent computer control of such household functions as lighting in low-risk areas are considerably easier to accept than, for example, door locks, the control of stoves and other home appliances, or home entertainment content, such as television broadcasts, over which test subjects wanted to maintain greater control. Conversely, test subjects were willing to make concessions for things enhancing home safety, such as the home computer system turning off a stove left on.

The project developed a variety of designs and functions for smart lights, which were tested in test subject homes. It was found that household items with an entirely new way of functioning change the lives of residents in many, even unexpected ways. The lights, which were able to ”listen” to surrounding noises and change their intensity or colour, made the residents consciously control their voices in a new way. This type of ”decibel-light” might lead to a situation in which the residents begin to actively avoid doing things that make loud noises when they learn what the actual impact of those actions is. Conversely, noise readings taken on decibel meters differ from those picked up by a human ear: the extreme response of a light to a sudden sneeze caused some degree of amusement as well as irritation.

Design tests showed that the concrete character of a new technology has a major influence on its ability to be accepted into a home environment. The low-profile nature of climate control or alarm systems made them easier areas in which to employ computer technology. People want their homes to be first and foremost cosy, peaceful and filled with personal, familiar things. The project developed, for example, smart pillows, whose embedded microprocessors and RF sensors measured the reactions of people of different ages to technology, which was clad in a familiar, soft form. Children in particular enjoyed ”lively” and noise-making pillows, playing with them like toys. Embedding computer technology in a soft and familiar item like a pillow made it seem easily approachable and safe. Pillows are not perceived as having anything to do with computers, and when a prototype made a sort of animal sound, the test subjects immediately associated the fuzzy pillows with a dog or other pet.

Human-based ideas and ethically-sustainable choices must be taken into consideration in design

The project’s results demonstrate that the development of proactive technology should respect the abilities and decision-making power of people in regards to their living environment. Designers should give thought to what makes a house a home, and strive to develop technology so that it will not interfere with, but support and enhance precisely these dimensions of the home.

The Morphome project focused on the development of proactive home technologies which are grounded in human-based ideas and ethically-sustainable choices. Research also demands a broader social debate on the development and application of smart monitoring, sensing and control technologies. The proliferation of proactive systems in homes is hindered by industry standards as well as a lack of updates and maintenance services. Because each home is its very own, unique living environment, it is a challenge to develop standardised solutions for it.

Terhi Loukiainen | alfa
Further information:
http://www.aka.fi

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>