Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most Powerful Graphics Computing

11.11.2005


Highlight during SC|05 in Seattle: Fraunhofer Visualization Software on an IBM Cell Cluster Prototyp.



One highlight of the International Conference on High Performance Computing SC|05 in Seattle will be the visualization software PV-4D of the Fraunhofer Institute for Industrial Mathematics ITWM. The software has been installed on a prototype of an IBM cell blade cluster and will be presented to a large public for the first time. A successful test run was performed during the Fraunhofer Annual Meeting in Magdeburg, Germany on October 19 this year.

The visualization and analysis of extremely large amounts of data from the fields of scientific computing, image-rendering methods in medical technology, or oil exploration can be represented by easily understandable realtime animations thanks to PV-4D. The cell processor is now rendering things even faster: it is equipped with nine cores and currently represents the chip with the highest performance available for the mass market.


The professional visualization environment has been developed at the Competence Center High Performance Computing of the ITWM by Dr. Carsten Lojewski and his team and has been awarded the Joseph-von-Fraunhofer-Preis 2005. PV-4D is a pure software solution and explicitly works without the support of graphic cards. Time-critical functions use the vector units and the multi-pipes of modern processors for parallelization. The software works especially effectively if it is running on a cluster system. The network support (Gbit-Ethernet, Myrinet, Infiniband) is directly integrated into the parallel software, thus guaranteeing minimum latencies and large bandwidths.

A further central element of PV-4D is the decentralized software control. A server process is responsible for the computation of images and allows for the integration of simple viewers, which are installed on a laptop within the office network or on front-end computers of a virtual reality environment. The image composi-tion, which is usually done by special hardware, is also completely realized within the software.

The software is the tool with the highest performance available worldwide for a fast and interactive representation of gigantic amounts of data. The performance of the current cluster systems even exceeds the strongest special graphics computers, thus al-lowing for the interactive visualization of more than one terabyte of data. This performance is also convincing industrial partners, such as DaimlerChrysler, Shell AG, or the Berkeley Labs in California.

During the Supercomputing in Seattle (November 12-18), the new PV-4D Ray Tracing Kernel will be shown. It allows for the first time volume rendering of complex seismic data in real time. This opens up a new world of interaction for geophysicists, facilitating the analysis of data for the exploration of new oil wells.

The current implementation on the cell processor exclusively uses the vector units of the individual SPEs for the so-called SIMD-Shaft Ray Tracing; the available PEs are responsible for the parallel or-ganization of data. In such a way, 128 parallel rays can be com-puted at first-order coherence on each cell processor, and at sec-ond-order coherence 32 parallel rays with direct hardware sup-port. At the IBM booth in Seattle, 16 cell processors will be com-bined to form of a high-performance ray-tracing cluster.

Ilka Blauth | alfa
Further information:
http://www.fraunhofer.de/press

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>