Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Most Powerful Graphics Computing


Highlight during SC|05 in Seattle: Fraunhofer Visualization Software on an IBM Cell Cluster Prototyp.

One highlight of the International Conference on High Performance Computing SC|05 in Seattle will be the visualization software PV-4D of the Fraunhofer Institute for Industrial Mathematics ITWM. The software has been installed on a prototype of an IBM cell blade cluster and will be presented to a large public for the first time. A successful test run was performed during the Fraunhofer Annual Meeting in Magdeburg, Germany on October 19 this year.

The visualization and analysis of extremely large amounts of data from the fields of scientific computing, image-rendering methods in medical technology, or oil exploration can be represented by easily understandable realtime animations thanks to PV-4D. The cell processor is now rendering things even faster: it is equipped with nine cores and currently represents the chip with the highest performance available for the mass market.

The professional visualization environment has been developed at the Competence Center High Performance Computing of the ITWM by Dr. Carsten Lojewski and his team and has been awarded the Joseph-von-Fraunhofer-Preis 2005. PV-4D is a pure software solution and explicitly works without the support of graphic cards. Time-critical functions use the vector units and the multi-pipes of modern processors for parallelization. The software works especially effectively if it is running on a cluster system. The network support (Gbit-Ethernet, Myrinet, Infiniband) is directly integrated into the parallel software, thus guaranteeing minimum latencies and large bandwidths.

A further central element of PV-4D is the decentralized software control. A server process is responsible for the computation of images and allows for the integration of simple viewers, which are installed on a laptop within the office network or on front-end computers of a virtual reality environment. The image composi-tion, which is usually done by special hardware, is also completely realized within the software.

The software is the tool with the highest performance available worldwide for a fast and interactive representation of gigantic amounts of data. The performance of the current cluster systems even exceeds the strongest special graphics computers, thus al-lowing for the interactive visualization of more than one terabyte of data. This performance is also convincing industrial partners, such as DaimlerChrysler, Shell AG, or the Berkeley Labs in California.

During the Supercomputing in Seattle (November 12-18), the new PV-4D Ray Tracing Kernel will be shown. It allows for the first time volume rendering of complex seismic data in real time. This opens up a new world of interaction for geophysicists, facilitating the analysis of data for the exploration of new oil wells.

The current implementation on the cell processor exclusively uses the vector units of the individual SPEs for the so-called SIMD-Shaft Ray Tracing; the available PEs are responsible for the parallel or-ganization of data. In such a way, 128 parallel rays can be com-puted at first-order coherence on each cell processor, and at sec-ond-order coherence 32 parallel rays with direct hardware sup-port. At the IBM booth in Seattle, 16 cell processors will be com-bined to form of a high-performance ray-tracing cluster.

Ilka Blauth | alfa
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>