Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Supercomputers to enable safter, more efficient oil drilling


Oil companies could soon harness the power of distant supercomputers to tackle problems such as where to place equipment and how to clean up oil spills.

For decades, the industry has used computers to maximize profit and minimize environmental impact, explained Tahsin Kurc, assistant professor of biomedical informatics at Ohio State University.

Typically, companies take seismic measurements of an oil reservoir and simulate drilling scenarios on a local computer. Now Kurc and his colleagues are developing a software system and related techniques to let supercomputers at different locations share the workload. The system runs simulations faster and in much greater detail – and enables analysis of very large amounts of data.

The scientists are employing the same tools and techniques that they use to connect computing resources in biomedical research. Whether they are working with images from digitized microscopes or MRI machines, their focus is on creating software systems that pull important information from the available data.

From that perspective, a seismic map of an oilfield isn’t that different than a brain scan, Kurc said. Both involve complex analyses of large amounts of data.

In an oilfield, rock, water, oil and gas mingle in fluid pools underground that are hard to discern from the surface, and seismic measurements don’t tell the whole story.

Yet oil companies must couple those measurements to a computer model of how they can utilize the reservoir, so that they can accurately predict its output for years to come. And they can’t even be certain that they’re using exactly the right model for a field’s particular geology.

“You never know the exact properties of the reservoir, so you have to make some guesses,” Kurc said. “You have a lot of choices of what to do, so you want to run a lot of simulations.”

The same problems arise when a company wants to minimize its effects on the environment around the reservoir, or track the path of an oil spill.

Each simulation can require hours or even days on a PC, and generate tens of gigabytes (billions of bytes) of data. Oil companies have to greatly simplify their computer models to handle such large datasets.

Kurc and his Ohio State colleagues – Joel Saltz, professor and chair of the Department of Biomedical Informatics, assistant professor Umit Catalyurek, research programmer Benjamin Rutt and graduate student Xi Zhang – are enabling technologies to spread that data around supercomputers at different institutions. In a recent issue of the journal Concurrency and Computation: Practice and Experience, they described a software program called DataCutter that portions out data analysis tasks among networked computer systems.

This project is part of a larger collaboration with researchers at the University of Texas at Austin, Oregon State University, University of Maryland, and Rutgers University. The institutions joined together to utilize the TeraGrid network, which links supercomputer centers around the country for large-scale studies.

Programs like DataCutter are called “middleware,” because they link different software components. The goal, Kurc said, is to design middleware that works with a wide range of applications.

“We try to come up with commonalities between the applications in that class,” he said. “Do they have a similar way of querying the data, for instance? Then we develop algorithms and tools that will support that commonality.”

DataCutter coordinates how data is processed on the network, and filters the data for the end user.

The researchers tested DataCutter with an oilfield simulation program developed at the University of Texas at Austin. They ran three different simulations over the TeraGrid: one to assess the economic value of an oilfield, one to locate sites of bypassed oil, and one to evaluate different production strategies – such as the placement of pumps and outlets in an oil field.

The source data came from simulation-based oilfield studies at the University of Texas at Austin. That data and the output data from the simulations were spread around three sites: the San Diego Supercomputer Center, the University of Maryland, and Ohio State.

Using distributed computers, they were able to reduce the execution time of one simulation from days to hours, and another from hours to several minutes. But Kurc feels that speed isn’t the only benefit that oil companies would get from doing their simulations on computing infrastructures such as TeraGrid. They would also have access to geological models and datasets at member institutions, which could boost the accuracy of their simulations.

The National Science Foundation funded this project to make publicly available, open-source software products for industry and academia, so potential users can download the software through an open source license and use it in their projects.

Tahsin Kurc | EurekAlert!
Further information:

More articles from Information Technology:

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

nachricht Green Light for Galaxy Europe
15.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation

19.03.2018 | Information Technology

Tiny implants for cells are functional in vivo

19.03.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>