Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST method improves reliability of GPS clocks

10.10.2005


The average user may not notice, but the Global Positioning System (GPS) is more reliable today than it was several years ago.



Widely used by the military, first responders, surveyors and even consumers, GPS is a navigation and positioning system consisting of ground-based monitors and a constellation of satellites that rely on atomic clocks. A statistical method, developed by the National Institute of Standards and Technology (NIST) and tested and implemented with the help of several collaborators, has made the job of analyzing the accuracy and reliability of these satellite-borne time signals significantly faster and easier. The method will help ensure that GPS clocks produce accurate location and distance measurements and remain closely synchronized with official world time.

The NIST method, described in a recent paper,* has been incorporated over the past few years into the GPS clock analysis software system managed by the Naval Research Laboratory (NRL). The satellite clocks--commercial devices based in part on research originally done at NIST--use the natural oscillations of rubidium atoms as "ticks," or frequency standards. The algorithm helps detect and correct GPS time and frequency anomalies. The algorithm also can be used to improve the control of other types of atomic clocks and has been incorporated into commercial software and instruments for various timing applications, according to NIST electronics engineer David Howe, lead author of the paper.


A GPS receiver pinpoints its location based on the distance to three or more GPS satellites at known locations in space. The distance is calculated from the time it takes for satellite radio signals to travel to the receiver. Thus, timing accuracy affects distance measurements. The NIST method makes a series of mathematical calculations to account for numerous measures of random "noise" fluctuations in clock operation simultaneously.

This makes it easier to estimate many sources of error and identify the onset of instabilities in the clocks in minutes or hours rather than days. Adjustments then can be made promptly. The technique also could accelerate the evaluation of clocks during the process of building GPS satellites, where test time is at a premium. "Ultimately, it should improve reliability, stability and accuracy for many people who use GPS for time and navigation,"said Howe.

Co-authors of the paper include scientists from NRL, the Jet Propulsion Laboratory at the California Institute of Technology, the Observatoire de Besancon in France, and Hamilton Technical Services in South Carolina.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>