Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue method will help industry design parts-search systems

27.09.2005


Researchers at Purdue University who developed the first system capable of searching a company’s catalog of three-dimensional parts created with computer-aided design software are now providing a method to evaluate how well such systems work.


A "shape-search" method developed by engineers at Purdue University enables people to search a company’s catalog of parts created with computer-aided design software. As this image illustrates, the Purdue method lets people sketch the general shape of the part they are looking for and retrieves parts that match the sketch. Users also can pick an inventoried CAD part that resembles the part they are seeking, and then matches are retrieved. The search can be conducted over the Internet or internally at a company site. The method has been commercialized by a company in the Purdue Research Park. Shape-search engines could save time and millions of dollars annually by making it easier for companies to "reuse" previous designs, reducing redundancy and streamlining a company’s supply chain. (School of Mechanical Engineering/Purdue University)


A "shape-search" method developed by engineers at Purdue University enables people to search a company’s catalog of parts created with computer-aided design software. The method, which has been commercialized by a company in the Purdue Research Park, lets people sketch the general shape of the part they are looking for and retrieves parts that match the sketch. As this image illustrates, users also can pick an inventoried CAD part that resembles the part they are seeking, and the system retrieves matches. The search can be conducted over the Internet or internally at a company site. Shape-search engines could save time and millions of dollars annually by making it easier for companies to "reuse" previous designs, reducing redundancy and streamlining a company’s supply chain. (School of Mechanical Engineering/Purdue University)



Shape-search engines could save time and millions of dollars annually by making it easier for companies to "reuse" previous designs, reducing redundancy and streamlining a company’s supply chain. The systems will enable companies to benefit from the lessons learned in creating past parts, said Karthik Ramani, a professor of mechanical engineering and director of the Purdue Research and Education Center for Information Systems in Engineering.

The Purdue mechanical engineers have created a "benchmarking database and process" that enables engineers to evaluate how well their search system is able to retrieve matches, Ramani said.


Findings will be detailed in two research papers being presented today (Monday, Sept. 26) during the 25th Computers and Information in Engineering Conference held by the American Society of Mechanical Engineers in Long Beach, Calif. The papers were written by Ramani, mechanical engineering doctoral students Natraj Iyer and Jayanti Subramaniam, and postdoctoral research associate Jiantao Pu.

The Purdue 3-D shape-search method also has been selected for a special "showcase and reception" from 5-7 p.m. (PDT) on Tuesday (Sept. 27) at the Hyatt Regency hotel. The method, developed by Pu and Ramani, has been commercialized by Imaginestics LLC, a company in the Purdue Research Park. Ramani is chief scientist for the company, which has developed products based on the research.

Computer-aided design, commonly referred to as CAD, was introduced a few decades ago for such daunting projects as creating better ship hulls and airplane wings. The systems are now routinely used to design everything from automotive water pumps to industrial machine parts.

"One of the great disappointments of CAD has been the difficulty of reusing data," Ramani said. "Once CAD information has been created and used, it is often stored and forgotten. As a result, industry loses a lot of money by not being able to reuse earlier parts. The proverbial wheel is reinvented many times."

Parts designers spend about 60 percent of their time searching for the right information, which is one of the most frustrating tasks for engineers, Ramani said.

"The whole power of computers is lost if you are not able to retrieve and ’reuse’ what you have created in the past," he said.

The Purdue shape-search system enables people to select an inventoried part that resembles a desired part and retrieve similar items. Users also can sketch the desired part entirely from memory, or they can choose a part that looks similar from the company’s catalog and then sketch modifications to that part. The system then assists in finding the desired part.

The Purdue benchmarking system uses an inventory of 1,000 parts and evaluates how well a search system is able to retrieve matches to a part entered into a query. The parts are grouped in 40 categories, such as ringlike parts, T-shaped parts, cylindrical parts and disk-shaped parts.

"If I give a query for a part that’s in one of the categories, the top 10 results should ideally be in that category and as close to the queried part as possible," Ramani said. "If the search system found only six matches from the right category and four from some other category, then I know it’s not that good."

The Purdue researchers also have created a method for automatically orienting a part as humans would view it – in its "most stable orientation," meaning a position in which the part would not fall over.

"If I placed a part on the top of a table and it fell over, it would be in an unstable position," Ramani said. "If I placed the same part on a table and it remained in place, that would be its most stable position, which is how humans imagine a part and how they draw the part. We came up with a method for very stable pose determination, then we index the part in the database in that pose. Then, for that particular stable position, we project it in various views, such as a side view, a front view and a top view, so that you can really see what the part looks like, which is important for sketch-based queries."

The benchmarking database and parts inventory are available online. A demonstration software prototype called "Shapelab" also is available online.

A critical element that makes the most stable pose determination and searchable database possible is using simplified versions of CAD parts. Those simplified versions, called "faceted models" because they are made up of a series of triangular segments, require less computing power than would be needed to process more complex CAD objects. The Purdue researchers created a new method for representing a part, converting it from a flat, two-dimensional drawing into a "two and a half dimension" representation. The 2.5-D method adds individual detail to the drawings and faceted CAD models and represents them in a way that is searchable.

The Purdue methods allow the user to fine-tune the search by changing the sketch.

"The search is a multi-step process, which is very important," Ramani said. "You repeatedly narrow down the characteristics of the part you are looking for to bridge the gap between what’s in your head – your idea of what the part looks like – and what’s in this huge inventory of parts. This is not a simple, single-step approach that others have tried."

The Purdue researchers used their benchmarking process to test about a dozen shape-search methods, including two from Purdue and the remainder from other universities.

"Our methods consistently performed with 20 to 30 percent higher precision than other methods," Ramani said. "In addition, the Purdue method has the unique capability of being interactive and closer to human perception. They have made search an interactive process rather than a one-shot query."

The Purdue researchers plan to eventually provide their benchmarking system online free of charge.

The work has been funded by the Indiana 21st Century Research and Technology Fund, created by the state to promote high-tech research and development and to help commercialize innovations. The work also is supported by Purdue’s Center for Advanced Manufacturing and the Cyber Center, both located at Discovery Park, the university’s hub for interdisciplinary research and entrepreneurship.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Karthik Ramani, (765) 494-5725, ramani@ecn.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Information Technology:

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>