Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From shared to distributed memory systems for applications


Shared-memory computing applications have never taken particularly well to operating on distributed-memory systems, at least until now. A possible solution has emerged, of interest to NASA and IBM, and is being tested on their distributed computing systems.

Funded under the European Commission’s IST programme, the POP project focused on generating an environment to allow applications designed using the OpenMP Application Program Interface (API) to operate on distributed-memory systems.

Developed by a consortium of computer vendors to enable the easy creation of portable, high-level shared-memory applications under the Fortran, C and C++ languages, OpenMP would be the perfect companion for distributed computing.

“However, it has not been a good companion to date,” says Jesús Labarta, the coordinator of the POP project at the Technical University of Catalonia.

The problem with OpenMP applications is that because they are designed for use in shared-memory systems, where memory is stored in a block and accessed by different processors, they do not function efficiently on distributed-memory machines where memory is accessed from different computers across a network. To make them run programmers have traditionally had to spend large amounts of time fiddling with code, often using a Message Passing Interface (MPI).

“What we have done is adapt OpenMP by extending and modifying protocols and runtime mechanisms to make it more flexible so programs can run on shared or distributed-memory systems without having to be retuned in each individual case,” Labarta explains. “The end goal is to allow OpenMP applications to run anywhere, reducing the time and costs of reprogramming.”

That is important for the future uses of OpenMP - principally for powerful numerical and simulation applications - given the increased use of distributed computing systems. Hence the interest of NASA and IBM.

In its cooperation with the project, NASA’s Ames research centre explored the possibility of employing POP’s OpenMP environment to overcome compatibility problems in parallelising their machines. The POP technique is also being tested on IBM’s MareNostrum supercomputer in Barcelona, the most powerful supercomputer in Europe to date, built entirely from commercially available components and using a Linux operating environment. On MareNostrum OpenMP applications are being run over various processor nodes in a distributed environment. “Without the work of POP, OpenMP wouldn’t run on MareNostrum,” the project coordinator notes.

Though the IST project ended in February this year, the researchers are continuing their work with a view to putting their OpenMP environment into widespread use. “The research is ongoing, although I think within three years our environment could be widely used and will have a substantial impact in the programming world,” Labarta says.

Tara Morris | alfa
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>