Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tooth enamel dating technique could help identify disaster victims

15.09.2005


The radioactive carbon-14 produced by above-ground nuclear testing in the 1950s and 1960s is providing forensic scientists with a more precise way to determine a person’s age at the time of death. The method could help in the identification of victims of Hurricane Katrina and other large-scale disasters.



The new technique, developed by researchers at Lawrence Livermore National Laboratory (LLNL) and the Karolinska Institute in Sweden, determines the amount of carbon-14 in tooth enamel. Scientists can relate the extensive atmospheric record for carbon-14 to when the tooth was formed and calculate the age of the tooth, and its owner, to an accuracy of within about 1.6 years.

“Unlike most other tissue, dental enamel doesn’t turn over,” said Bruce Buchholz of LLNL’s Center for Accelerator Mass Spectrometry, where the enamel samples were analyzed. “Whatever carbon gets laid down in enamel during tooth formation stays there, so tooth enamel is a very good chronometer of the time of formation.


“We were surprised at how well it worked,” he said. “And if you look at multiple teeth formed at different times, you can get (the age range) even tighter.” Previous techniques, such as evaluating skeletal remains and tooth wear, are accurate only to within five to 10 years in adults, Buchholz said.

The research was reported in this week’s edition of the journal Nature.

Buchholz said Swedish forensic scientists already have used enamel dating to help narrow the search for victims of last December’s tsunami in Southeast Asia. “After a few days in the water, it’s very hard to identify someone,” he said. “You can’t use (enamel dating) to identify a person – that requires a DNA analysis – but you can narrow down the number of people you need to look at from a list of missing people.”

Livermore officials are providing information on the enamel dating technique to federal agencies as part of the Laboratory’s scientific and technical assistance in response to Hurricane Katrina. LLNL also is assisting in setting up emergency high-bandwidth communications and wireless networks. The Laboratory’s Micropower-Impulse Radar (MIR) technology also is being deployed to assist search and rescue crews in locating hurricane victims. This same technology was deployed in the days following the September 11 attacks in New York’s World Trade Center rubble.

Carbon-14, or radiocarbon, is naturally produced by cosmic ray interactions with air and is present at low levels in the atmosphere and food. Atmospheric testing of nuclear weapons from 1955 to1963 produced a dramatic surge in the amount of radiocarbon in the atmosphere, Buchholz said.

“Even though the detonations were conducted at only a few locations, the elevated carbon-14 levels in the atmosphere rapidly equalized around the globe,” he said. Since atmospheric testing was banned in 1963, the levels have dropped substantially as the carbon-14 reacted with oxygen to form carbon dioxide, which was taken up by plants during photosynthesis and mixed with the oceans.

“Because we eat plants and animals that live off plants, the carbon-14 concentration in our bodies closely parallels that in the atmosphere at any one time,” he said.

Buchholz and his colleagues analyzed 33 teeth from 22 different people whose ages were known. The enamel separations were done at the Karolinska Institute, and sample preparation and accelerator mass spectrometry analysis was done at Lawrence Livermore.

The enamel dating technique doesn’t work for people born before 1943, because all of their teeth would have been formed before testing began in 1955.

In their Nature paper, Buchholz and his colleagues note that the technique for carbon-14 analysis using accelerator mass spectrometry is becoming increasingly sensitive and inexpensive, suggesting that even though nuclear testing was conducted decades ago, enamel dating could be used for precise age determination “for a long time to come.”

Founded in 1952, Lawrence Livermore National Laboratory has a mission to ensure national security and to apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Charlie Osolin | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>