Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Universal software, universal appeal


The vision of global applications is a step closer with the development of tools to create software that can work on any device.

The DEGAS project initially defined the key elements of a software program that are common to all devices, like security, and then separated those device-specific functions.

"Essentially, we wanted to address the problem caused by heterogeneous networks, because currently content and software cannot be used on any device or operating system," says project coordinator Mr Corrado Priami of the computer and telecommunications department of Italy’s University of Trento.

Heterogeneous networks – ones with a wide variety of different devices like PCs, PDAs and even mobile phones – are already a major part of modern life.

But designing software for such networks is a nightmare. Each device uses a different operating system, and uses different applications, which can’t easily talk to each other. It’s a costly problem creating enormous inefficiencies and DEGAS has gone a long way to solving it.

The project developed a theory to handle heterogeneous networks and produced a set of tools to write software for use on a broad range of devices. Specifically, they developed a mobile adventure game and a mobile commerce solution.

In fact, the project was so successful that industrial partner Motorola immediately began commercial deployment of the mobile e-commerce software it developed, which works on a wide variety of handsets.

The team used a standard protocol, called Universal Modelling Language (UML) to design the key elements of the game and e-commerce software. "The main idea is that when you have to compile an application towards a specific device you can decide at which level of the process you start differentiating the application for a particular architecture," says Priami.

So, the team developed a core programme that’s the same for all devices. With this approach they simply required compilers to adapt the very low-level intermediate language to individual devices.

One of the team’s coups was to develop most analysis tasks – like performance predictions for instance, or security checks – at the logical or universal level. This simplifies application development enormously. Another coup was the development of formal analysis and validation tools for application development. "We were able to push these tools in the standard development process of applications. That is now for instance used inside Motorola," says Priami.

This ensures that the software works correctly, making the program more secure and easier to develop. The team also got a very practical demonstration of the power of formal analysis and validation. They were able to find faults with real protocols that are currently in use.

"Project partner IMM found a flaw in version 1.1 of the Single Sign-On Protocol through analysis." Says Priami. "It’s another guarantee for producing high-quality software. The team developed tools that ensure that there cannot be a breach in security when the software is running in a network if certain conditions are satisfied. What’s more, performance in the final application will not suffer when the customer places constraints on the system." These constraints are customer personalisation, like allowing his or her device to receive incoming messages, for example.

The team did build one demonstrator, a mobile massive multiplayer online role-playing game – or MMMORG for short. Essentially it’s a mobile adventure game, which many people can play at once. DEGAS’ trick here was to keep the server at the centre of the game very small, with most of the game controls run on the specific device. That way the latency issues that dog wireless games – where slow connections can ruin good games – are overcome, because the games need to send very little information to the server.

"We also developed a peer-to-peer protocol that allowed the devices to talk to each other without having a central control, and this is very good application. In particular, our formal analysis and validation tool were able to refine the communication protocol for security and performance. We made a demonstration of this application. I felt it was very impressive," says Priami proudly.

Theoretically this approach could be applied to any architecture, or device, running any operating system. "Yes, theoretically, because we make no underlying assumptions about the physical hardware," says Priami. "This is another of our breakthroughs."

The team will now continue their work to develop their innovations. Currently the tools are in prototype, they are suitable for academic research but they are not ready to be used in the market.

Tara Morris | alfa
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>