Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universal software, universal appeal

01.09.2005


The vision of global applications is a step closer with the development of tools to create software that can work on any device.



The DEGAS project initially defined the key elements of a software program that are common to all devices, like security, and then separated those device-specific functions.

"Essentially, we wanted to address the problem caused by heterogeneous networks, because currently content and software cannot be used on any device or operating system," says project coordinator Mr Corrado Priami of the computer and telecommunications department of Italy’s University of Trento.


Heterogeneous networks – ones with a wide variety of different devices like PCs, PDAs and even mobile phones – are already a major part of modern life.

But designing software for such networks is a nightmare. Each device uses a different operating system, and uses different applications, which can’t easily talk to each other. It’s a costly problem creating enormous inefficiencies and DEGAS has gone a long way to solving it.

The project developed a theory to handle heterogeneous networks and produced a set of tools to write software for use on a broad range of devices. Specifically, they developed a mobile adventure game and a mobile commerce solution.

In fact, the project was so successful that industrial partner Motorola immediately began commercial deployment of the mobile e-commerce software it developed, which works on a wide variety of handsets.

The team used a standard protocol, called Universal Modelling Language (UML) to design the key elements of the game and e-commerce software. "The main idea is that when you have to compile an application towards a specific device you can decide at which level of the process you start differentiating the application for a particular architecture," says Priami.

So, the team developed a core programme that’s the same for all devices. With this approach they simply required compilers to adapt the very low-level intermediate language to individual devices.

One of the team’s coups was to develop most analysis tasks – like performance predictions for instance, or security checks – at the logical or universal level. This simplifies application development enormously. Another coup was the development of formal analysis and validation tools for application development. "We were able to push these tools in the standard development process of applications. That is now for instance used inside Motorola," says Priami.

This ensures that the software works correctly, making the program more secure and easier to develop. The team also got a very practical demonstration of the power of formal analysis and validation. They were able to find faults with real protocols that are currently in use.

"Project partner IMM found a flaw in version 1.1 of the Single Sign-On Protocol through analysis." Says Priami. "It’s another guarantee for producing high-quality software. The team developed tools that ensure that there cannot be a breach in security when the software is running in a network if certain conditions are satisfied. What’s more, performance in the final application will not suffer when the customer places constraints on the system." These constraints are customer personalisation, like allowing his or her device to receive incoming messages, for example.

The team did build one demonstrator, a mobile massive multiplayer online role-playing game – or MMMORG for short. Essentially it’s a mobile adventure game, which many people can play at once. DEGAS’ trick here was to keep the server at the centre of the game very small, with most of the game controls run on the specific device. That way the latency issues that dog wireless games – where slow connections can ruin good games – are overcome, because the games need to send very little information to the server.

"We also developed a peer-to-peer protocol that allowed the devices to talk to each other without having a central control, and this is very good application. In particular, our formal analysis and validation tool were able to refine the communication protocol for security and performance. We made a demonstration of this application. I felt it was very impressive," says Priami proudly.

Theoretically this approach could be applied to any architecture, or device, running any operating system. "Yes, theoretically, because we make no underlying assumptions about the physical hardware," says Priami. "This is another of our breakthroughs."

The team will now continue their work to develop their innovations. Currently the tools are in prototype, they are suitable for academic research but they are not ready to be used in the market.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>