Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwavable chips for wireless communication

18.08.2005


A recent EU project designed and developed a new demonstrator microchip that will dramatically cut the cost of producing new wireless products and could mean that a whole range of existing products will be enabled for wireless communication.



The IST-funded IMPACT project included industry heavyweights Ericsson and Philips who worked together to develop a new CMOS (complementary metal-oxide-semiconductor) chip that can transmit and receive microwave signals in the 5–24 GHz frequency range. The team developed a range of demonstrators, including amplifiers, oscillators, mixers, and frequency multipliers.

The IMPACT team sought to discover whether analogue and radio frequency (RF) circuits could be developed for the emerging 90nm CMOS chips. These chips use a much smaller (90nm) circuit etching process than current models.


"The 90 nm digital CMOS chips are becoming available this year and we wanted to know if we could use them for high-frequency microwave communications," says Dr Stefaan Decoutere, coordinator of the IMPACT project and a researcher at the Interuniversity MicroElectronics Centre (IMEC) in Belgium.

Older RF-CMOS chips are already used in 2.4Ghz devices like the Bluetooth transmitters and receivers developed separately by Ericsson, one of the project partners. "But the requirements for high-end applications like GSM telephony are much more stringent," says Decoutere. Currently these applications require expensive, multi-chip solutions.

IMPACT found that the 90nm CMOS chips can meet the stringent specification standards for mid-range and high-end applications like GSM and Point-to-Point microwave communications. Ultimately it will cut costs, reduce power consumption and increase the functionality of these devices.

"These chips are expensive to develop but over time they are much cheaper to produce," says Decoutere. Because all the circuits are on one chip the production process is much more efficient and RF-CMOS chips can be produced in large volumes, slashing costs.

The potential for CMOS chips in microwave communications is excellent, according to Professor Herbert Zirath, an IMPACT member at Chalmers University of Technology in Sweden. "CMOS can be used for radio communication and radar circuits like mobile phones, wireless local area networks (WLAN), high speed links, where many functions are integrated. This will be important for the cost of such systems since CMOS is very cost efficient in large quantities."

CMOS chips are an important type of integrated circuits. They include microprocessors, microcontrollers, static RAM, and other digital circuits. These different functions can be integrated on a single chip, further reducing costs and the complexity of devices like digital cameras. CMOS chips only use power when its transistors are switching between on and off states. As a result, they use less electricity and generate less heat than rival chips, which means they are ideal for mobile applications.

The IMPACT team scored two successes. Firstly, they achieved a given performance specification at significantly lower cost and power consumption than can be managed with today’s technologies. Secondly, they pushed the state-of-the-art circuit performance in RF-CMOS technology with demonstrator low-noise amplifiers and voltage-controlled oscillators with world-record figures-of-merit in performance and robustness against Electrostatic Discharge.

The project won the enthusiastic support of the industrial partners. Ericsson said the project fell well within its strategic vision for the exploitation of the microwave frequency spectrum and that a major advantage was that project began with specific applications in mind.

"The review for the European Commission was very positive and we produced nearly 50 papers on our research in international conferences and journals," says Decoutere. The project may even be chosen for the EC 2005 research yearbook, which highlights outstanding research in the EU.

Applications for the 90nm CMOS technology are already in the works. For example, Ericsson’s target applications over the next three years include WLAN systems, like WiFi, and terminals in the 5 to 6 GHz frequency range.

Project partner Philips says that the use of mainstream CMOS technology as a cost-effective solution for wireless communication is a particularly important emerging market with a huge range of potential product applications. Philips believes this technology will become an enabler for wireless consumer electronics and that virtually all-electronic products may become wireless so as to enable device-to-device interaction. This not only includes high-end and luxury products, as are available now, but also but also low-end products such as Walkmans and MP3 players.

But these devices are heavily dependent on the timely integration of RF and analogue functionality into advanced CMOS technology in order to yield cost-effective system-on-a-chip solutions. IMPACT has gone a long way to solving these problems.

In the meantime, IMPACT wants to launch a follow-up project to see if it is possible to develop CMOS chips using a 45nm etching process. "If you look at scaling of digital CMOS you see that scaling towards 65 nm follows more or less the same approaches used in earlier chips," says Decoutere. "But for 45 nm and below there are quite a number of new materials and new architectures that are under investigation. We want to see what effect the new materials and production technologies required to produce a 45 nm chip might have on analogue and radio frequency functionality."

Advantages in a 45nm CMOS chip could include smaller chip size, the potential for improved performance, and lower power consumption for the same functionality, if the researchers can get it to work.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>