Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology shows our ancestors ate…everything!

08.08.2005


Using a powerful microscope and computer software, a team of scientists from Johns Hopkins, the University of Arkansas, Worcester Polytechnic Institute and elsewhere has developed a faster and more objective way to examine the surfaces of fossilized teeth, a practice used to figure out the diets of our early ancestors.



By comparing teeth from two species of early humans, Australopithecus africanus and Paranthropus robustus, the researchers confirm previous evidence that A. africanus ate more tough foods, such as leaves, and P. robustus ate more hard, brittle foods. But they also revealed wear patterns suggesting that both species had variable diets. "This new information implies that early humans evolved and altered their diet according to seasonal and other changes in order to survive," said Mark Teaford, Ph.D., professor of functional anatomy and evolution at the Johns Hopkins School of Medicine.

The new approach to studying dental microwear, the microscopic pits and scratches on the tooth surface caused by use, offers a more accurate measurement of the surface’s appearance and is described in the August 4 issue of Nature.


"Paleontologists and physical anthropologists have had a somewhat naive view on diet, in part due to the limitations of time-consuming, subjective approaches to analyzing teeth," said Teaford. "So it’s a huge step to have a reliable technology that detects subtler diet variations."

A team of scientists from the University of Arkansas and Worcester Polytechnic Institute developed the software, called "scale-sensitive fractal analysis," to analyze fossilized tooth surfaces through a confocal microscope, which allows three-dimensional analysis of an object. "You put the specimen in and the microscope is programmed to step down at fine intervals, perform its series of scans, and collect 3D coordinates for each data point," said Teaford. The result is like a map of the earth that shows mountains, valleys and plains in full relief, only at a microscopic scale.

As anticipated from traditional examination of fossilized teeth, the tooth surfaces of P. robustus were more pitted and complex, while those of A. africanus were more scratched, with features often running in more uniform directions. However, according to Teaford, who along with researchers from the University of Arkansas, Stony Brook University, and Pennsylvania State University carried out the data analysis, the study also revealed unexpected variability in the samples for each species and overlapping data for the two species. The researchers say this suggests that both species relied on their less preferred foods during periods of food scarcity. "If members of a species live in a seasonal environment, they can get all the soft fruit they need during the wet season," Teaford added. "But come dry season, they may have to process something very hard or tough in order to survive."

"For years, it’s been a dream of many researchers interested in our lineage to obtain this kind of information," continued Teaford. "And the computer software is phenomenal, the heart and soul of this project. We now have a reliable technology to quickly and accurately measure such surfaces." Teaford said future applications of the computer software include not only projects in paleontology and anthropology, but also engineering. "You could use it to examine the wear of metal surfaces on each other or to monitor clean surfaces at a microscopic scale," said Teaford.

Besides Teaford, the authors of the paper are Robert Scott and Peter Ungar of the University of Arkansas; Torbjorn Bergstrom and Christopher Brown of Worcester Polytechnic Institute; Frederick Grine of State University of New York at Stony Brook; and Alan Walker of Pennsylvania State University.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Information Technology:

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>