Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New technology shows our ancestors ate…everything!


Using a powerful microscope and computer software, a team of scientists from Johns Hopkins, the University of Arkansas, Worcester Polytechnic Institute and elsewhere has developed a faster and more objective way to examine the surfaces of fossilized teeth, a practice used to figure out the diets of our early ancestors.

By comparing teeth from two species of early humans, Australopithecus africanus and Paranthropus robustus, the researchers confirm previous evidence that A. africanus ate more tough foods, such as leaves, and P. robustus ate more hard, brittle foods. But they also revealed wear patterns suggesting that both species had variable diets. "This new information implies that early humans evolved and altered their diet according to seasonal and other changes in order to survive," said Mark Teaford, Ph.D., professor of functional anatomy and evolution at the Johns Hopkins School of Medicine.

The new approach to studying dental microwear, the microscopic pits and scratches on the tooth surface caused by use, offers a more accurate measurement of the surface’s appearance and is described in the August 4 issue of Nature.

"Paleontologists and physical anthropologists have had a somewhat naive view on diet, in part due to the limitations of time-consuming, subjective approaches to analyzing teeth," said Teaford. "So it’s a huge step to have a reliable technology that detects subtler diet variations."

A team of scientists from the University of Arkansas and Worcester Polytechnic Institute developed the software, called "scale-sensitive fractal analysis," to analyze fossilized tooth surfaces through a confocal microscope, which allows three-dimensional analysis of an object. "You put the specimen in and the microscope is programmed to step down at fine intervals, perform its series of scans, and collect 3D coordinates for each data point," said Teaford. The result is like a map of the earth that shows mountains, valleys and plains in full relief, only at a microscopic scale.

As anticipated from traditional examination of fossilized teeth, the tooth surfaces of P. robustus were more pitted and complex, while those of A. africanus were more scratched, with features often running in more uniform directions. However, according to Teaford, who along with researchers from the University of Arkansas, Stony Brook University, and Pennsylvania State University carried out the data analysis, the study also revealed unexpected variability in the samples for each species and overlapping data for the two species. The researchers say this suggests that both species relied on their less preferred foods during periods of food scarcity. "If members of a species live in a seasonal environment, they can get all the soft fruit they need during the wet season," Teaford added. "But come dry season, they may have to process something very hard or tough in order to survive."

"For years, it’s been a dream of many researchers interested in our lineage to obtain this kind of information," continued Teaford. "And the computer software is phenomenal, the heart and soul of this project. We now have a reliable technology to quickly and accurately measure such surfaces." Teaford said future applications of the computer software include not only projects in paleontology and anthropology, but also engineering. "You could use it to examine the wear of metal surfaces on each other or to monitor clean surfaces at a microscopic scale," said Teaford.

Besides Teaford, the authors of the paper are Robert Scott and Peter Ungar of the University of Arkansas; Torbjorn Bergstrom and Christopher Brown of Worcester Polytechnic Institute; Frederick Grine of State University of New York at Stony Brook; and Alan Walker of Pennsylvania State University.

Joanna Downer | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>