Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optoelectronics to increase the broadband flow

03.08.2005


The broadband boom is creating an ever-increasing demand for more capacity and higher rates of data transfer on both fixed-line and wireless networks. Helping to meet that demand, without the need to lay costly new infrastructure, is the LABELS project.



“Consumers are soon going to want data streams of 100 megabits per second in their homes and eventually 1 gigabit per second,” says José Capmany, a researcher at Valencia Technical University in Spain and the coordinator of the IST programme-funded project. “There are two ways to do this: lay more cable, which involves public works and is expensive and disruptive, or create technologies that allow existing cable to be used to its utmost potential, which is what we are doing.”

LABELS is developing two key optoelectronic technologies to expand the capacity and speed of fixed-line communications using fibre-optic cables and to improve the processing of radio frequency (RF) signals in wireless networks. Both techniques overcome bottlenecks in the flow of data and, though still in the experimental stage, are proving their potential to vastly improve data flow right along the chain.


“It’s like a river with many small streams running into it, if the flow becomes too much the river will burst its banks,” Capmany says. “It’s the same with broadband communications which require a powerful backbone – the river – to handle ever increasing amounts of data.”

In the case of fibre-optic networks, the LABELS project is developing a groundbreaking technique to transmit data faster while using fewer resources. The system is expected to play a role in a future generation of optical Internet Protocol (IP) routers, as opposed to the electronic ones in use today. The major advantage of using light wave architectures for processing is that they can send and receive data over multiple wavelengths as opposed to the single bandwidth that electronic systems are confined to, allowing the full potential of optical networks to be utilised.

The LABELS technique relies on subcarrier multiplexing and label swapping in packet data transfer, allowing nodes at different stages along the network to change the wavelength at which the data is being carried. It is considerably more flexible than existing Wavelength Division Multiplexing (WDM) techniques which, though increasing data transfer speeds, lock signals to specific wavelengths.

“Existing WDM systems work like a telephone call: you first have to make a connection and then the information is transmitted, which is fine if it is being used for a long duration of time. It is not optimally suited to sending data over the Internet in packets, however, which is precisely what has made IP so successful and which is what we are applying in the optical domain,” Capmany says. “We are the only researchers in Europe currently working on subcarrier multiplexing and label swapping in the optical domain though other researchers here and in the United States are developing related technologies in the field.”

Preliminary tests of the LABELS system, which will be fully evaluated later this year in Valencia, have surpassed even the project’s own goals regarding data transfer rates.

“We set out to achieve a rate of 10 Gbps but we saw that we could actually reach 20 Gbps with the current system,” the coordinator notes. “With further development that could even be expanded to 40 Gbps and beyond.”

Performance increases are also expected to result from LABELS’ other application in radio frequency processing for wireless, where the partners are due to test the effects of replacing current electronic RF filters with optical ones.

“The problem that has existed to date with the electronic filters of radio antennas is that they are not flexible because they are only made to send and receive over a specific wavelength which can cause bottlenecks and restricts the possibility for upgrades. By converting the filters to optical ones it’s possible to send and receive over more bandwidth, allowing the antennas to work at different wavelengths and allowing them to be used for different applications,” Capmany explains.

The LABELS optical filters are designed to work between 130 MHz and 20 GHz and even open the possibility to processing at very high frequencies – up to 60GHz – where other techniques are less efficient.

Project partner Telefónica I+D in Spain will test the system later this year for channel switching in UMTS – a particular challenge given the relatively low 1.9 GHz frequency of the third generation mobile communications technology.

“UMTS is not ideally suited to this technique, which works better at higher frequencies such as 5 or 10 GHz,” Capmany says. “However, mobile communications are continually moving up the radio spectrum and the fourth and fifth generation will probably operate at those frequencies, giving our technology strong commercial potential in the future.”

Indeed, both the fixed-line and wireless systems developed by LABELS are not due to reach the market as commercial products for some time because of the need for further developments in related applications and services. However, Capmany expects to see the technologies in use by 2010, by which time today’s stream of data will truly be a fast-flowing river.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>