Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer vision system detects foreign objects in processed poultry and food products

22.07.2005


The squared segments indicate that the GTRI computer vision system’s software has detected a foreign object (in this case, plastic glove pieces) in the sample product. Photo Courtesy GTRI


Although metal detectors help commercial food processors keep metal fragments from ending up in finished products, these detectors can’t identify plastic and other foreign objects.

And as plastic becomes more widespread, used in everything from conveyor belts to latex gloves, plastic contamination is a growing concern for many food processing operations.

For the past year, John Stewart, a research engineer at the Georgia Tech Research Institute, has been leading a development team in building a computer-vision system that identifies plastic and other unwanted elements in finished food products. The project is funded by Georgia’s Traditional Industries Program for Food Processing with additional support from industrial partners.



The system, now in final development stages, is scheduled to begin field testing later this summer. Also, Stewart presented a paper on the project on July 18 at the American Society of Agricultural Engineers’ 2005 annual meeting in Tampa, Fla.

Incidences of plastic contamination are infrequent, but when they occur, fallout can be extensive. Recalls are expensive, not only in terms of logistics and returned product, but also because recalls can tarnish a company’s brand image and reduce consumer confidence.

Even if contamination is caught before a product leaves the factory, it can take a toll, depending on the extent of the problem and when it occurred. "When you have 6,000 to 8,000 pounds of poultry moving along the production line every hour, that’s a lot of chicken to reprocess or write-off," Stewart said.

To help food processors ensure product quality, GTRI’s innovative inspection tool combines computer vision technology with sophisticated color discrimination algorithms. The computer-vision system, which sits above the production line adjacent to metal detectors, is first trained to identify the conveyor belt background and desired characteristics for the food product. This information is stored in the computer’s hard drive, and as the product moves along the conveyor, the computer-vision system captures digital pictures and analyzes them. If the system sees an object it doesn’t recognize, it records the digital image and activates an alarm and kick-off device that removes the product from the line.

Although this system can determine a full range of color, lab tests have focused on finding blue and green objects. Blue has become a standardized color for plastic used in the food processing environment. "Few foods are blue, so food processors hope that line workers will recognize any foreign objects making their way into the product stream," Stewart explained.

Yet humans don’t make the most consistent inspectors. Although people are easily trained, they are also easily distracted, said GTRI research engineer Doug Britton, who is also working on the project.

"The product stream is moving very quickly – about 12 feet per second, which is the equivalent of eight miles per hour. If a person blinks or looks away for even a second, they can miss a problem," Britton explained. "In contrast, machine vision is very diligent. It doesn’t get tired or bored."

What’s more, line workers see only the top of finished products. GTRI’s computer-vision system captures additional views of surface area by taking digital images as products tumble off one conveyor belt and onto another.

"That doesn’t guarantee the system will spot every single incidence," Stewart said. "Yet if it misses a fragment on one piece of product, it should stop subsequent products. The key is to pinpoint where contamination happened and how widespread it is."

In lab tests, the system has been able to identify foreign objects as small as 1.5 millimeters with few false alarms and high accuracy rates (approaching 100 percent), researchers said. As the researchers begin field tests later this summer, one of their objectives is to see how well the system works in a real-world setting over a long period of time.

The system is designed to operate on conveyor belts moving 12 feet per second. In the lab, top conveyor speeds were 3 feet per second. But researchers simulated factory conditions by using dimmer lights and a longer integration time to produce blur.

The ultimate goal is to make the computer-vision system as fast and accurate as possible without outpricing the technology for industry users, researchers noted. To that end, GTRI has partnered with Gainco Inc., an equipment manufacturer in Gainesville, Ga. Gainco has provided feedback during the system’s development, and the company plans to make the production-scale system that will be used in field tests.

Though lab tests focused on finding plastic fragments in poultry products, GTRI’s computer-vision system also can identify non-plastic contaminants, such as glass, and be used for meat and other food products.

"We’re trying to make the system as generic as possible, so anything that doesn’t look like the product will be detected," Stewart said.

Jane M. Sanders | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>