Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer vision system detects foreign objects in processed poultry and food products

22.07.2005


The squared segments indicate that the GTRI computer vision system’s software has detected a foreign object (in this case, plastic glove pieces) in the sample product. Photo Courtesy GTRI


Although metal detectors help commercial food processors keep metal fragments from ending up in finished products, these detectors can’t identify plastic and other foreign objects.

And as plastic becomes more widespread, used in everything from conveyor belts to latex gloves, plastic contamination is a growing concern for many food processing operations.

For the past year, John Stewart, a research engineer at the Georgia Tech Research Institute, has been leading a development team in building a computer-vision system that identifies plastic and other unwanted elements in finished food products. The project is funded by Georgia’s Traditional Industries Program for Food Processing with additional support from industrial partners.



The system, now in final development stages, is scheduled to begin field testing later this summer. Also, Stewart presented a paper on the project on July 18 at the American Society of Agricultural Engineers’ 2005 annual meeting in Tampa, Fla.

Incidences of plastic contamination are infrequent, but when they occur, fallout can be extensive. Recalls are expensive, not only in terms of logistics and returned product, but also because recalls can tarnish a company’s brand image and reduce consumer confidence.

Even if contamination is caught before a product leaves the factory, it can take a toll, depending on the extent of the problem and when it occurred. "When you have 6,000 to 8,000 pounds of poultry moving along the production line every hour, that’s a lot of chicken to reprocess or write-off," Stewart said.

To help food processors ensure product quality, GTRI’s innovative inspection tool combines computer vision technology with sophisticated color discrimination algorithms. The computer-vision system, which sits above the production line adjacent to metal detectors, is first trained to identify the conveyor belt background and desired characteristics for the food product. This information is stored in the computer’s hard drive, and as the product moves along the conveyor, the computer-vision system captures digital pictures and analyzes them. If the system sees an object it doesn’t recognize, it records the digital image and activates an alarm and kick-off device that removes the product from the line.

Although this system can determine a full range of color, lab tests have focused on finding blue and green objects. Blue has become a standardized color for plastic used in the food processing environment. "Few foods are blue, so food processors hope that line workers will recognize any foreign objects making their way into the product stream," Stewart explained.

Yet humans don’t make the most consistent inspectors. Although people are easily trained, they are also easily distracted, said GTRI research engineer Doug Britton, who is also working on the project.

"The product stream is moving very quickly – about 12 feet per second, which is the equivalent of eight miles per hour. If a person blinks or looks away for even a second, they can miss a problem," Britton explained. "In contrast, machine vision is very diligent. It doesn’t get tired or bored."

What’s more, line workers see only the top of finished products. GTRI’s computer-vision system captures additional views of surface area by taking digital images as products tumble off one conveyor belt and onto another.

"That doesn’t guarantee the system will spot every single incidence," Stewart said. "Yet if it misses a fragment on one piece of product, it should stop subsequent products. The key is to pinpoint where contamination happened and how widespread it is."

In lab tests, the system has been able to identify foreign objects as small as 1.5 millimeters with few false alarms and high accuracy rates (approaching 100 percent), researchers said. As the researchers begin field tests later this summer, one of their objectives is to see how well the system works in a real-world setting over a long period of time.

The system is designed to operate on conveyor belts moving 12 feet per second. In the lab, top conveyor speeds were 3 feet per second. But researchers simulated factory conditions by using dimmer lights and a longer integration time to produce blur.

The ultimate goal is to make the computer-vision system as fast and accurate as possible without outpricing the technology for industry users, researchers noted. To that end, GTRI has partnered with Gainco Inc., an equipment manufacturer in Gainesville, Ga. Gainco has provided feedback during the system’s development, and the company plans to make the production-scale system that will be used in field tests.

Though lab tests focused on finding plastic fragments in poultry products, GTRI’s computer-vision system also can identify non-plastic contaminants, such as glass, and be used for meat and other food products.

"We’re trying to make the system as generic as possible, so anything that doesn’t look like the product will be detected," Stewart said.

Jane M. Sanders | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>