Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL textile coding system weaving way to marketability

07.07.2005


A textile marking system developed at Oak Ridge National Laboratory that encodes information invisible to the naked eye could save the U.S. millions of dollars in revenue lost each year to counterfeiters and violators of trade laws.



While Mexican, Caribbean, African and Central American firms commonly use raw materials produced in the United States – and receive exemption from certain import tariffs – some manufacturers routinely falsify country-of-origin certification to avoid paying those taxes. The work of a team led by Glenn Allgood of the Department of Energy lab’s Computational Sciences and Engineering Division could put an end to the deception.

"Our goal is to have a system using a fluorescent dye or other taggant that will cost just tenths of a cent per taggant, can survive the harsh manufacturing process and will not affect the quality of the garment," Allgood said. "We will also be able to encode specific process information such as the date and place of manufacture."


As a result of an initial grant from the U.S. Small Business Administration, ORNL has developed a novel textile coding system that acts as a micro-taggant. The marker, which can be read only by special scanners, identifies the source, type, production conditions and composition of textile material. The system is based on a near-infrared -- light just beyond visible red light -- material that can be used either as a marker, geometric figure or a bar code with millions of letter and number combinations.

The encoding system is far less expensive on a per taggant basis than other information encoding systems such as those that use DNA or radio frequency identification. In addition, Allgood and others involved in the collaboration believe the ORNL technology offers a number of distinct advantages such as no impact on material properties and multiple uses at a lower cost.

Recently completed tests confirm that the ORNL tagging process works and can survive the textile manufacturing process, which includes scouring, bleaching, mercerizing, dyeing and finishing. Next, Allgood and colleagues at North Carolina State University’s College of Textiles plan to conduct tests using elements of a first-generation system and work with an industry partner to conduct field tests.

"Once the marking system becomes fully operational, the U.S. Customs Service will have the tool to clearly identify apparel made with U.S. textiles in accordance with trade agreements," said Hardy Poole, a member of the research team. "This will be invaluable to our government in its efforts to eliminate the illegal importation of millions of dollars of non-U.S. textiles that enter our country annually."

Other partners in the effort include the U.S. Department of Agriculture, Clemson University and manufacturers of yarn, thread, fabric forming, dyeing and finishing and sewn products.

While the textile industry is the primary customer for the proposed marker system, Allgood noted that the technology has many other applications such as for homeland defense, inventory tracking and control, and the military.

"By using one of our simple and inexpensive tags, a company will instantly be able to identify its products," Allgood said. "This could have a number of legal and security implications."

The next phase of the project will involve gaining a better understanding of the stability of tagged materials after being tagged – specifically whether the marker has an effect on the fabric quality. In addition, researchers will investigate the optimum method for depositing the tag onto the material and seek to answer a number of other questions involving the many variables of the process.

Oak Ridge National Laboratory is managed by UT-Battelle for the Department of Energy.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Information Technology:

nachricht Who can find the fish that makes the best sound?
28.02.2017 | Technische Universität Wien

nachricht Many Android password managers unsafe
28.02.2017 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>