Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL textile coding system weaving way to marketability

07.07.2005


A textile marking system developed at Oak Ridge National Laboratory that encodes information invisible to the naked eye could save the U.S. millions of dollars in revenue lost each year to counterfeiters and violators of trade laws.



While Mexican, Caribbean, African and Central American firms commonly use raw materials produced in the United States – and receive exemption from certain import tariffs – some manufacturers routinely falsify country-of-origin certification to avoid paying those taxes. The work of a team led by Glenn Allgood of the Department of Energy lab’s Computational Sciences and Engineering Division could put an end to the deception.

"Our goal is to have a system using a fluorescent dye or other taggant that will cost just tenths of a cent per taggant, can survive the harsh manufacturing process and will not affect the quality of the garment," Allgood said. "We will also be able to encode specific process information such as the date and place of manufacture."


As a result of an initial grant from the U.S. Small Business Administration, ORNL has developed a novel textile coding system that acts as a micro-taggant. The marker, which can be read only by special scanners, identifies the source, type, production conditions and composition of textile material. The system is based on a near-infrared -- light just beyond visible red light -- material that can be used either as a marker, geometric figure or a bar code with millions of letter and number combinations.

The encoding system is far less expensive on a per taggant basis than other information encoding systems such as those that use DNA or radio frequency identification. In addition, Allgood and others involved in the collaboration believe the ORNL technology offers a number of distinct advantages such as no impact on material properties and multiple uses at a lower cost.

Recently completed tests confirm that the ORNL tagging process works and can survive the textile manufacturing process, which includes scouring, bleaching, mercerizing, dyeing and finishing. Next, Allgood and colleagues at North Carolina State University’s College of Textiles plan to conduct tests using elements of a first-generation system and work with an industry partner to conduct field tests.

"Once the marking system becomes fully operational, the U.S. Customs Service will have the tool to clearly identify apparel made with U.S. textiles in accordance with trade agreements," said Hardy Poole, a member of the research team. "This will be invaluable to our government in its efforts to eliminate the illegal importation of millions of dollars of non-U.S. textiles that enter our country annually."

Other partners in the effort include the U.S. Department of Agriculture, Clemson University and manufacturers of yarn, thread, fabric forming, dyeing and finishing and sewn products.

While the textile industry is the primary customer for the proposed marker system, Allgood noted that the technology has many other applications such as for homeland defense, inventory tracking and control, and the military.

"By using one of our simple and inexpensive tags, a company will instantly be able to identify its products," Allgood said. "This could have a number of legal and security implications."

The next phase of the project will involve gaining a better understanding of the stability of tagged materials after being tagged – specifically whether the marker has an effect on the fabric quality. In addition, researchers will investigate the optimum method for depositing the tag onto the material and seek to answer a number of other questions involving the many variables of the process.

Oak Ridge National Laboratory is managed by UT-Battelle for the Department of Energy.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>