Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF, nine other universities complete ultrahigh-speed data network

27.06.2005


Whether mapping genes, probing elemental particles or monitoring global warming, more and more scientists rely on massive data vaults located at universities and institutions around the world.



Now, researchers at 10 Florida universities have the infrastructure for a computer network that ensures that capability – one faster than any other education-based network in the Southeast and among the top in the nation in speed and capacity.

Two and a half years in the making, the Florida LambdaRail Network is expected to be operating among all its member universities this week. The network, which can move information at speeds of 10 gigabits per second, has space for a total of 32 10-gigabit networks, or channels. The result: The next generation Internet has 100 times more capacity than what was available to UF previously – capacity that members will be able to purchase at a fraction of its current cost.


“Everyone believes that high-speed networking and grid technology is the future of science,” said Marc Hoit, UF’s interim associate provost of information technology and one of several UF officials involved in the project. “You have to have a high-speed network, and we now have one of the best.”

FLR is part of the National Lambda Rail, an initiative to create a national high-speed information infrastructure for research universities and technology companies. Similar regional optical networks are under way in Texas, Virginia, New York and other states -- but Florida’s FLR is the only one paid for in full by its member universities, Hoit said.

All but four of Florida’s public universities are participants in the network, which also includes the Florida Institute of Technology, Nova Southeastern University and the University of Miami.

The network relies on so-called “dark fiber,” existing buried fiber optic cable that wasn’t yet “lit up,” or tapped for use. UF won the contract for network operations and design, and UF technologists have played a lead role in designing a system to exploit more than 1,540 miles of dark fiber connecting all the member universities. Strategic partners included Cisco Systems, which provided high-speed routers and other equipment, and FiberCo, a fiber holding company. FiberCo facilitated FLR’s purchase of 1540 route miles from Level3 Communications, Inc.

Dave Pokorney, UF’s director of network services and the chief technology officer of the Florida LambdaRail, said the network is the fastest among higher education networks in the Southeast and one of the fastest in the nation.

Universities paid to participate on FLR on a sliding scale based on their size and the proposed use, with UF contributing about $1 million so far, Hoit said. The annual operating cost is expected to closely track UF’s previous Internet connection cost of $500,000, but, Pokorney said, “it’s many orders of magnitude faster than the prior network and makes provisioning of new services easier and at much reduced cost.

Casual users at the universities won’t notice the difference. But the massive amount of capacity is key to researchers such as Paul Avery, a UF professor of physics.

Before the FLR, the fastest connection available to UF physicists was about one-sixteenth what it is now, Avery said. That’s not nearly enough for the vast data sets soon to be produced by such experimental facilities as the world’s highest energy particle collider, the Large Hadron Collider near Geneva, he said.

Researchers will use the collider to smash protons and ions into each other at higher energies than ever achieved before. The collisions – aimed at allowing scientists to examine the structure of matter and recreate the conditions just after the "Big Bang” – will produce trillions of particles, each of which will require detailed analysis. The resulting database is so huge that only those with the fastest networks will be able to tap into and manipulate it.

“We’re talking about moving petabytes of data, where a petabyte is a million gigabytes,” Avery said. “With the old system, it would have taken us months to download data that will now require only a few days.”

Avery, who studies high-energy physics, directs two nationwide National Science Foundation-projects aimed at engineering ultrafast computer grids. Both the GriPhyN Project and the International Virtual Data Grid Laboratory are aimed at helping scientists access and crunch the numbers from the collider and other astronomy and physics experiments.

Other Florida universities are tapping the FLR network to do research the impact of hurricanes, tornadoes and thunderstorms; to enhance distance-learning capabilities and for large-scale scientific simulation.

Marc Hoit | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>