Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF, nine other universities complete ultrahigh-speed data network

27.06.2005


Whether mapping genes, probing elemental particles or monitoring global warming, more and more scientists rely on massive data vaults located at universities and institutions around the world.



Now, researchers at 10 Florida universities have the infrastructure for a computer network that ensures that capability – one faster than any other education-based network in the Southeast and among the top in the nation in speed and capacity.

Two and a half years in the making, the Florida LambdaRail Network is expected to be operating among all its member universities this week. The network, which can move information at speeds of 10 gigabits per second, has space for a total of 32 10-gigabit networks, or channels. The result: The next generation Internet has 100 times more capacity than what was available to UF previously – capacity that members will be able to purchase at a fraction of its current cost.


“Everyone believes that high-speed networking and grid technology is the future of science,” said Marc Hoit, UF’s interim associate provost of information technology and one of several UF officials involved in the project. “You have to have a high-speed network, and we now have one of the best.”

FLR is part of the National Lambda Rail, an initiative to create a national high-speed information infrastructure for research universities and technology companies. Similar regional optical networks are under way in Texas, Virginia, New York and other states -- but Florida’s FLR is the only one paid for in full by its member universities, Hoit said.

All but four of Florida’s public universities are participants in the network, which also includes the Florida Institute of Technology, Nova Southeastern University and the University of Miami.

The network relies on so-called “dark fiber,” existing buried fiber optic cable that wasn’t yet “lit up,” or tapped for use. UF won the contract for network operations and design, and UF technologists have played a lead role in designing a system to exploit more than 1,540 miles of dark fiber connecting all the member universities. Strategic partners included Cisco Systems, which provided high-speed routers and other equipment, and FiberCo, a fiber holding company. FiberCo facilitated FLR’s purchase of 1540 route miles from Level3 Communications, Inc.

Dave Pokorney, UF’s director of network services and the chief technology officer of the Florida LambdaRail, said the network is the fastest among higher education networks in the Southeast and one of the fastest in the nation.

Universities paid to participate on FLR on a sliding scale based on their size and the proposed use, with UF contributing about $1 million so far, Hoit said. The annual operating cost is expected to closely track UF’s previous Internet connection cost of $500,000, but, Pokorney said, “it’s many orders of magnitude faster than the prior network and makes provisioning of new services easier and at much reduced cost.

Casual users at the universities won’t notice the difference. But the massive amount of capacity is key to researchers such as Paul Avery, a UF professor of physics.

Before the FLR, the fastest connection available to UF physicists was about one-sixteenth what it is now, Avery said. That’s not nearly enough for the vast data sets soon to be produced by such experimental facilities as the world’s highest energy particle collider, the Large Hadron Collider near Geneva, he said.

Researchers will use the collider to smash protons and ions into each other at higher energies than ever achieved before. The collisions – aimed at allowing scientists to examine the structure of matter and recreate the conditions just after the "Big Bang” – will produce trillions of particles, each of which will require detailed analysis. The resulting database is so huge that only those with the fastest networks will be able to tap into and manipulate it.

“We’re talking about moving petabytes of data, where a petabyte is a million gigabytes,” Avery said. “With the old system, it would have taken us months to download data that will now require only a few days.”

Avery, who studies high-energy physics, directs two nationwide National Science Foundation-projects aimed at engineering ultrafast computer grids. Both the GriPhyN Project and the International Virtual Data Grid Laboratory are aimed at helping scientists access and crunch the numbers from the collider and other astronomy and physics experiments.

Other Florida universities are tapping the FLR network to do research the impact of hurricanes, tornadoes and thunderstorms; to enhance distance-learning capabilities and for large-scale scientific simulation.

Marc Hoit | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>