Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF, nine other universities complete ultrahigh-speed data network

27.06.2005


Whether mapping genes, probing elemental particles or monitoring global warming, more and more scientists rely on massive data vaults located at universities and institutions around the world.



Now, researchers at 10 Florida universities have the infrastructure for a computer network that ensures that capability – one faster than any other education-based network in the Southeast and among the top in the nation in speed and capacity.

Two and a half years in the making, the Florida LambdaRail Network is expected to be operating among all its member universities this week. The network, which can move information at speeds of 10 gigabits per second, has space for a total of 32 10-gigabit networks, or channels. The result: The next generation Internet has 100 times more capacity than what was available to UF previously – capacity that members will be able to purchase at a fraction of its current cost.


“Everyone believes that high-speed networking and grid technology is the future of science,” said Marc Hoit, UF’s interim associate provost of information technology and one of several UF officials involved in the project. “You have to have a high-speed network, and we now have one of the best.”

FLR is part of the National Lambda Rail, an initiative to create a national high-speed information infrastructure for research universities and technology companies. Similar regional optical networks are under way in Texas, Virginia, New York and other states -- but Florida’s FLR is the only one paid for in full by its member universities, Hoit said.

All but four of Florida’s public universities are participants in the network, which also includes the Florida Institute of Technology, Nova Southeastern University and the University of Miami.

The network relies on so-called “dark fiber,” existing buried fiber optic cable that wasn’t yet “lit up,” or tapped for use. UF won the contract for network operations and design, and UF technologists have played a lead role in designing a system to exploit more than 1,540 miles of dark fiber connecting all the member universities. Strategic partners included Cisco Systems, which provided high-speed routers and other equipment, and FiberCo, a fiber holding company. FiberCo facilitated FLR’s purchase of 1540 route miles from Level3 Communications, Inc.

Dave Pokorney, UF’s director of network services and the chief technology officer of the Florida LambdaRail, said the network is the fastest among higher education networks in the Southeast and one of the fastest in the nation.

Universities paid to participate on FLR on a sliding scale based on their size and the proposed use, with UF contributing about $1 million so far, Hoit said. The annual operating cost is expected to closely track UF’s previous Internet connection cost of $500,000, but, Pokorney said, “it’s many orders of magnitude faster than the prior network and makes provisioning of new services easier and at much reduced cost.

Casual users at the universities won’t notice the difference. But the massive amount of capacity is key to researchers such as Paul Avery, a UF professor of physics.

Before the FLR, the fastest connection available to UF physicists was about one-sixteenth what it is now, Avery said. That’s not nearly enough for the vast data sets soon to be produced by such experimental facilities as the world’s highest energy particle collider, the Large Hadron Collider near Geneva, he said.

Researchers will use the collider to smash protons and ions into each other at higher energies than ever achieved before. The collisions – aimed at allowing scientists to examine the structure of matter and recreate the conditions just after the "Big Bang” – will produce trillions of particles, each of which will require detailed analysis. The resulting database is so huge that only those with the fastest networks will be able to tap into and manipulate it.

“We’re talking about moving petabytes of data, where a petabyte is a million gigabytes,” Avery said. “With the old system, it would have taken us months to download data that will now require only a few days.”

Avery, who studies high-energy physics, directs two nationwide National Science Foundation-projects aimed at engineering ultrafast computer grids. Both the GriPhyN Project and the International Virtual Data Grid Laboratory are aimed at helping scientists access and crunch the numbers from the collider and other astronomy and physics experiments.

Other Florida universities are tapping the FLR network to do research the impact of hurricanes, tornadoes and thunderstorms; to enhance distance-learning capabilities and for large-scale scientific simulation.

Marc Hoit | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>