Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Online analytical toolbox for cancer and other biomedical research


A new website,, offers a prototype for online access to an analytical toolbox that enables biomedical researchers to integrate dissimilar data from a variety of sources and extract the most useful information from it by posing queries.

Dr. Raj Acharya, professor of computer science who headed the site development project, says, "Right now, the prototype focuses on prostate cancer data but our online toolbox could be used for dissimilar data sets for any disease."

For example, using the prostate cancer data sets, researchers can pose questions such as the following: What percentage of the patients recorded have a family history of prostate cancer? or How many patients have been categorized with different pathologic T stages? or Give me the average expression vector for patients with Gleason sum score of 4.

To come up with answers, the toolbox applies information fusion techniques to integrate multiple and dissimilar data sets so that all of the relevant data can be used simultaneously in advanced analysis.

Acharya says information fusion is new to the biological sciences as well as some of the other tools in the online toolbox, including software he and his research group developed to combine gene information with gene sequence information.

The toolbox is detailed in a paper, "An Online Analysis and Information Fusion Platform for Heterogeneous Biomedical Informatics Data," presented Thursday, June 23, at the IEEE Conference for Computer Based Medical Systems in Dublin, Ireland. The software will also be demonstrated during the International Symposium on Intelligent Systems for Molecular Biology on Wednesday, June 29, in Detroit, MI. The authors are Srivatsava Ranjit Ganta, doctoral candidate in computer science; Jyotsna Kasturi, doctoral candidate in computer science; Dr. John Gilbertson, M.D., assistant professor of cellular and molecular pathology, University of Pittsburgh, School of Medicine; and Acharya, who is also head of Penn State’s Department of Computer Science and Engineering.

The online toolbox uses data fusion techniques originally developed by the military to fuse laser radar, heat sensor and TV images as well as other information. The fusion software puts the data together in a way that makes it possible to consider all of it that is relevant to a particular question.

Current biomedical research requires analysis of patient demographics, clinical and pathology data, treatment history, and patient outcomes as well as gene expression, sequence and gene ontologies. Acharya says the extent of knowledge that can be extracted from any of the individual data sets is limited. However, using the online toolbox researchers can perform analyses in an integrated manner that could lead to better disease diagnosis, prognosis, treatment and drug discovery.

The toolbox performs information fusion using multidimensional analysis and clustering techniques. For example, to answer the question, Give me the average expression vector for patients with Gleason sum score of 4, the software classifies the data sets into categories from which the user chooses the facts and dimensions. Based on this selection, the system presents the user with an initial view of the information subset. The user is then allowed to explore this subset and further focus on the knowledge of interest by using the operations: Summarize and Detail.

Barbara Hale | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>