Sandia develops secure wireless technology

Project considered milestone for next generation of secure wireless networks


Sandia National Laboratories in cooperation with Time Domain Corporation and KoolSpan Inc. has developed a secure wireless Ultra Wideband (UWB) data communication network that can be used to help sensors monitor U.S. Air Force bases and DOE nuclear facilities and wirelessly control remotely operated weapon systems.

The new wireless technology also promises to be a gateway for a new generation of advanced sensors created by fusing UWB communication with UWB radar and used to detect intrusion of adversaries or insurgents for the protection of tactical forces and forward bases such as those deployed in the Middle East or Iraq. This is of particular value to the U.S. Air Force Electronic Systems Center (ESC) whose mission is to provide the latest in command, control, and information systems for the Air Force and who sponsored the work.

This secure form of wireless communication developed for practical use leverages UWB with the unyielding encryption protection of the 256-bit Advanced Encryption Standard (AES) to form UWB/AES. In an age of electromagnetic warfare and increasing threat from malevolent radio frequency (RF) attacks from high-tech adversaries, UWB is of strategic value providing stealth for covert operation by hiding within the noise floor to prevent detection and where other forms of RF communication find it virtually impossible to operate. UWB’s probability of survival increases in a toxic RF battlefield when compared to many other forms of RF.

UWB, also known as “impulse radio,” is different because it does not use a carrier as do other forms of RF for wireless networking or communication technologies. Instead UWB transmits a flood of ultra-short microwave pulses of energy on the order of 100 pico-seconds (one pico-second is one-millionth of one-millionth or 10-12 second) in duration that extend over an extremely wide band of energy covering several Gigahertz of frequency.

“With the spreading of impulse energy over such wide frequency spectrum, the signal power falls near or within the noise floor making these signals extremely difficult to detect, intercept or jam and, when combined with AES, virtually impossible to crack,” says H. Timothy Cooley, senior scientific engineer at Sandia. “Utilizing the immense available spectrum of UWB also improves wireless performance to accommodate the increased data rate needed by advanced sensors.”

Among the key wireless features of the UWB/AES are its IP network compatibility and its “per-packet” rotating 256-bit encryption keys for even greater crypto-protection. The UWB/AES network architecture requires no computing infrastructure, provides real-time (hardware) encryption, and requires zero maintenance for complete self-recovery if interrupted or when a sensor goes down.

Based on tests conducted at the KoolSpan Encryption Laboratory in Santa Clara, Calif. this spring, Sandia with KoolSpan demonstrated a wireless UWB network bridge with real-time 256-bit AES encryption for live-streaming video images generated from a surveillance camera or thermal imager. The tests used only microwatts of transmitted power approximately 1000 times less power than typically used by conventional wireless IEEE 802.11b or Wi-Fi.

Media Contact

Michael Padilla EurekAlert!

More Information:

http://www.sandia.gov

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors