Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotech memory company poised to profit in billion dollar markets

21.06.2005


“Nanomech is a new non-volatile memory technology which is completely different to the existing one,” explains Dr Mike Beunder, CEO of Cavendish Kinetics. “The existing technology involves storing charge whereas ours operates mechanically like a switch.”



Cavendish Kinetics develops nanotechnology-based non-volatile memory. To support this activity, Cavendish Kinetics has developed its own patent-protected range of Nanomech™ embedded non-volatile memory products.

Nanomech™, using standard CMOS process technology, enables the implementation of unique memory storage devices with ultra low-power, high speed read/write characteristics that function fully up to 200°C and are completely insensitive to radiation. Compared to current technology, Nanomech™ storage devices offer 200 times better write performance while consuming 50 to 100 times less power.


Cavendish Kinetics currently offers three embedded non-volatile memory products, an electrically programmable Fuse (eFuse), an embedded One-Time-Programmable (eOTP) memory product, and an embedded multi-time programmable (eMTP) memory product.

“Cavendish Kinetics is a spin-off from Cavendish Laboratory at Cambridge University,” mentions Beunder, “and the company’s founder and CTO, Dr Charles Smith, is still a Reader at the Laboratory.” When Smith established Cavendish Kinetics in 1994, Cambridge University transferred ownership of its nanotech non-volatile memory patents to the company in exchange for stock.

Beunder believes the target market for the new memory technology to be worth $4.75bn and will grow to $6bn by 2008. Potential applications for the Nanomech™ storage devices include micro-controllers, RFID and smartcards used in the mobile, automotive, space, defence and medical sectors. To help enter these markets, the company recently opened a US sales office in Silicon Valley.

The company is currently seeking about $10m in second round VC investment in order to establish a worldwide marketing and sales organisation as well as to finance the further development of eOTP and eMTP. Attracting new investment is a key activity for Beunder and he recently seized the opportunity to present his company’s business plan to investors at the European Tech Investment Forum in London, one of Europe’s leading events for ICT entrepreneurs and investors.

Cavendish Kinetics is currently working on the 4.68m euro PROMENADE IST project, which involves seven partners including Bosch and IMEC. The project is developing a process management and design system for microsystem technologies. The computer system will enable process engineers to simulate and optimise silicon-based thin film processes and help designers to understand technological constraints when designing microsystems for manufacture. Cavendish Kinetics is responsible for integrating its in-house management and tracking system for CMOS process developments into the PROMENADE system.

The company was also involved in the EUREKA-funded MESCI-I project, which integrated MEMS nanoswitches in mainstream CMOS processes and helped to advance the firm’s Nanomech technology. “The MESCI-I project was regarded as so successful,” announces Beunder proudly, “that we have just won the LYNX Award for 2005 from the EUREKA programme.”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>