Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Enhancing 3D design with semantics


An innovative 3D design system using semantic information has proven its ability to overcome many of the drawbacks of existing Computer-Aided Design (CAD) programmes, speeding the work of designers and opening the door to an array of commercial applications in a broad variety of sectors.

The IST programme-funded SpacemantiX project, which ended in April, resulted in a series of pilot tools for use in mechanical and automotive engineering, interior design and architecture, and toy manufacturing, reflecting the potential for the system to be employed in virtually any sector where designers have to manipulate and interlink multiple three dimensional components. By using semantic as well as spatial information the system defines what components can be placed where, how they will interact and how overall designs should be configured, making design processes easier for expert and non-expert users alike.

“The technique ensures that everything knows where it is supposed to belong in the design, whether it is part of a car engine or the chairs in a dining room,” explains project coordinator Rainer Malkewitz at ZGDV in Germany. “By eliminating many of the more laborious aspects of a design project, the system saves designers time and greatly increases their efficiency.”

The interior planning and architectural pilot shows particularly clearly the benefits of SpacemantiX over traditional CAD systems. Designers are able to simply drag and drop objects onto the design and let these automatically arrange themselves based on their semantic and spatial properties.

“Because of the inter-object constraints chairs, for example, will automatically go to the table in the right position and a coffee table will position itself in front of the sofa. In today’s CAD systems aligning such objects would take hundreds of clicks whereas with SpacemantiX it can be done in one click through the use of assisted placement,” Malkewitz says.

SpacemantiX also incorporates advanced graphics rendering to show the colours and textures of an object and improve visualisation, while enhancing access to components databases by making searches seamless and more intuitive.

In two tests carried out by the project, designers using SpacemantiX completed interior plans four to five times faster than those using traditional CAD tools. The semantic data, the coordinator notes, could also contain information about the style of an object – “a Louis XVI chair would go with a Louis XVI table” – while spatial data ensures that chairs are placed with sufficient leg room or that objects are not blocking doors.

“Using spatial constraints is particularly important for instance in office design, due to health and safety concerns,” Malkewitz says.

Similar improvements over traditional techniques were also evident in the other two pilots, which the coordinator notes are possibly closer to the market and are likely to be used commercially in the near future.

Automobile manufacturers, including Saab, Volvo and Ford, have expressed an interest in using the SpacemantiX system for engineering designs and in particular for developing interactive manuals.

“A car mechanic could use an interactive manual downloaded from the Internet to see the design of different components of a specific model of car and view interactively how the components fit together and how they should be dismantled,” Malkewitz explains. “Even for producing paper construction and repair manuals the system offers major advantages. We estimate that it cuts the production time for one page of a manual down to around two hours from the eight it takes with traditional line drawings, while also reducing the need for text, thereby saving on translation because a good 3D example can say much more than words.”

Another “real success story” of the project, in the view of the coordinator, is in the toy sector, however, where one of the project partners is planning to launch a commercial design tool within a year.

According to Francisco Ibañez at the Spanish Toy Research Association AIJU, a software platform based on SpacemantiX to allow the customisation of toys could mark a “small revolution” in the sector.

“Within the scope of the project a prototype of a toy design system we’ve called 3D Assembling has been developed. It is currently being used by three of our member companies and we are planning to begin marketing a finished product early next year,” Ibañez says. “At first it will be aimed at the conceptual design of new products by toy manufacturers although we are also planning to allow toy stores to order customised products and eventually allow consumers themselves to order personalised toys either through a store or from home over the Internet.”

While allowing professional designers to develop new models from scratch “in as little as five minutes” by combining different components, the easy to use tool would also create a new toy-buying concept with children able to pick and choose the look and colour of say a remote controlled car or a model airplane. “We are also considering incorporating a graphics add-in that would allow them to create personalised stickers for the toy, possibly based on a digital photo,” Ibañez says. “Customisation will be a major development in the toy sector.”

Tara Morris | alfa
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>