Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Picture this - automatic image categorisation


Creating, storing and transmitting visual images has become increasingly easy. Yet the same problem always arises – how to categorise or classify visual images automatically without using external metadata or image thumbnails? There now may be an answer.

Researchers in the IST project LAVA have developed a method of automatically categorising the content of digital images, providing an effective means of storing and retrieving digital image content without having to rely on additional metadata. The developed techniques should be of real value for document and content management, making it much easier for users to search for images as well as text.

An interdisciplinary approach

At the beginning of the project, the participants faced two major technological challenges: how to interpret and categorise efficiently large numbers of objects, scenes and events in real settings, and how to automatically acquire knowledge of categories for the convenient construction of further applications. To overcome them, they brought together two key groups of researchers.

“Our main idea was to bring together researchers from the machine-learning community with those from the computer-vision and cognitive science areas,” says LAVA’s Gabriela Csurka of Xerox Research Centre Europe (XRCE) in Grenoble.

“We began our approach by grouping together similar types of objects, such as bicycles or cars for example, and trying to find a way of categorising those that were common to a group,” says Csurka. “We applied machine-learning techniques to find the distinctions between images by focusing on sections of images that were similar – sections that were common to other images with the same content.” Researchers also needed to overcome the challenge of categorising image content despite views of objects from varying perspectives or from different distances.

A typical example of the challenges they faced was how to draw a distinction between an image of a car, and one of a stack of car tyres. Both picture types contain ‘patches’, or sections, of images that are the same. To overcome the problem, the team had to provide the system with the ability to examine key patches in other areas of the image. In this case, the software was programmed to check for other key content in the ‘car’ image, such as headlights or windows.

Real advance on earlier methods

At the close of the project at the end of April 2005, LAVA researchers have developed an integrated method of capturing visual images and identifying, automatically, the appropriate category for any captured objects or scenes, be they people, objects or simply landscapes. This confluence between machine-learning and vision interpretation has greatly enhanced the ability to build reliable vision-based detectors for everyday objects and events, they believe. Such systems can underpin novel applications of all kinds, including location identification and the description of meetings.

“We believe that we now have the state-of-the-art in image categorisation and event interpretation,” Csurka says. “Our system does not rely on the whole shape of an image, but on local patches or parts of the image with similar geometric properties. So it is more versatile – we can cope with much larger intra-class variations and still correctly interpret the image. It is a real advance on what went before.”

Underlining their achievement, the LAVA team, represented by the Gravir-INRIA laboratory and the University of Southampton, won 14 out of 18 competitions in detection, localisation and classification in the Visual Object Classes Challenge organised by the PASCAL network which emerged from LAVA’s work in recognition of the importance of the field and the maturity of the existing research. The challenge itself aimed to compile a standardised collection of object recognition databases and provide a common set of tools for accessing and managing database annotations.

According to Chris Dance, project coordinator and head of XRCE laboratory, the techniques developed in LAVA will certainly be taken forward. “We will be working with Xerox business groups to integrate this new system into Xerox’ document management offerings, making them pioneering products in this field and providing our customers with additional competitive advantage.”

Potentially the developed technologies could be used for browsing images within documents, archiving images and managing photo for consumers, and searching for images on the Web. But they could also be applied to video surveillance, human-computer interaction, medical imaging and robotics.

Tara Morris | alfa
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>