Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe’s first interactive system bringing GRID technology to the final user

02.05.2005


Ever since the internet was created, it has developed and advanced as new services have been introduced that have made it easier to access and send data between remote computers. Electronic mail and the easy-to-use interactive interface known as the World Wide Web are just two of the most important services that have helped to make the internet as popular as it is today. GRID technology, one of the latest systems that has been developed for linking computing resources, connects hundreds of large computers so they can share not only data itself, but also data processing capability and large storage capacity. This technology has now taken an important step forward: the hardware and tools required to make the interface interactive have become available. The UAB has participated in the project, taking charge of creating software to coordinate access between the different computers in the new system.



The most important new feature is that the system is interactive. The user works with a “virtual desktop” using commands and graphics windows that allow clear and easy access to all the resources on the GRID network, just like when someone browses through folders on a laptop computer. This system has enormous potential in many different fields.

One possible application is in those fields in which one needs to transform large quantities of information into knowledge, using simulations, analysis techniques and data mining, to make decisions. For example, a surgeon working from a remote location who needed to suggest different configurations for a bypass operation using information obtained through a scan on the patient could compare different simulations and observe in real time the blood flow in each simulation. Thanks to the new interactive system the surgeon would be able to use the simulations to make the best possible decision.


Another type of problem for which the new system could be useful would be in procedures requiring huge data processing capabilities and access to large distributed databases. This would be the case for an engineer in a thermal power station who needed to decide upon the best time to use different fuels, taking into account the way pollution would spread based on a specific weather model for the local area around the station.

Led by Miquel Ángel Senar, of the UAB’s Graduate School of Engineering (ETSE), the research team at the Universitat Autònoma de Barcelona has developed the software needed to coordinate and manage interactive use of the GRID network. The software allows several processors to be used simultaneously. The task of this service developed at the UAB is to carry out automatically all the steps required so that the user applications may be run in one of the GRID resources selected in a clear way by the service itself.

The system was developed as part of CrossGRID, a European project which received a five million euro investment and the support of 21 institutions from across Europe. In Spain, in addition to those from the UAB, there are also researchers from the Higher Council for Scientific Research (CSIC) and the University of Santiago de Compostela playing a vital role in the project. The team from the CSIC was responsible for the first application of the system: a neural network to search for new elementary particles in physics; the team from the University of Santiago de Compostela adapted an application for measuring air pollution as explained above in the example of the thermal power station.

Octavi López Coronado | alfa
Further information:
http://www.uab.es/uabdivulga/eng

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>