Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster handoff between Wi-Fi networks promises near-seamless 802.11 roaming

14.04.2005


Road warriors may no longer have to stay put in an airport lounge or Starbucks to access the high-speed Internet via an 802.11 Wi-Fi network. Thanks to software developed by two computer scientists at the University of California, San Diego, the time it takes to hand off from one Wi-Fi wireless network to the next can be dramatically shortened -- overcoming a major obstacle in Wi-Fi roaming.



Jacobs School of Engineering professor Stefan Savage and graduate student Ishwar Ramani have a patent pending on the basic invention behind SyncScan, a process to achieve practical, fast handoff for 802.11 infrastructure networks. Their study will be published in the Proceedings of the IEEE InfoCom 2005.

"Wi-Fi offers tremendous speeds if you stay in one place or at least within 100 meters of the same access point," said Savage, an assistant professor in the Computer Science and Engineering department and academic participant in the California Institute for


Telecommunications and Information Technology. "SyncScan is a handoff algorithm which can cut the time it takes to switch from one Wi-Fi access point to another by a factor of a hundred over existing solutions. This is a requirement for demanding applications like Voice over Wi-Fi [VoWi-Fi], where even short interruptions can disrupt the illusion of continuous connectivity." Savage notes that SyncScan also allows mobile devices to make better handoff decisions and therefore improve signal quality overall.

At present, Wi-Fi handoffs are cumbersome and time-consuming. Not until the access-point signal weakens substantially and begins losing packets of data does a Wi-Fi-enabled laptop, PDA or mobile phone begin scanning for a stronger signal. At that point, it broadcasts requests on all channels to find nearby access points. The result: a delay of up to one second, during which any packets may be lost. That may not seem inordinate when downloading data, but it can be unacceptable if the user is trying to listen to Internet radio, watch a streaming movie trailer or talk on a Wi-Fi phone.

"Today most Wi-Fi users accept being tethered to a single location in exchange for the broadband speeds that Wi-Fi offers," said Ph.D. candidate Ramani. "But increasingly they want to be able to make Voice of IP (VoIP)phone calls or stream multimedia while commuting or on the move, and a one-second disruption can seem like an eternity."

The SyncScan solution proposed by Savage and Ramani is a method to continuously monitor the proximity of nearby 802.11 access points. Instead of looking for surrounding access points just when the current signal is running low, a Wi-Fi device with SyncScan regularly checks signal strengths nearby - but only for very short periods of time. These times are picked to precisely coincide with regularly scheduled "beacon" messages sent by all standard Wi-Fi access points. The process eliminates the current need to start from scratch when looking for a stronger signal, and replaces the long scanning delay with many small delays that are imperceptible to the user.

To test their SyncScan algorithm, the researchers used a laptop running a voice application while walking between two areas of the UCSD campus served by neighboring Wi-Fi access points. "We used a popular VoIP called Skype which uses UDP [user datagram protocol] packets exchanged between two clients for voice communication," explained Savage. "Using SyncScan with a measurement interval of 500 millseconds, handoff delay was virtually imperceptible - roughly 5 milliseconds. Repeating the tests without SyncScan, the average handoff time was 450 milliseconds, but ranging up to a full second in some cases."

The researchers also observed a big difference in the number of lost data packets that can contribute to loss of data or voice dropout. Zero packets were dropped using the SyncScan algorithm in the UCSD tests, compared to substantial packet losses using current technology. "That is because the overhead of scanning for nearby base stations when the current signal weakens is routinely over 250 milliseconds, during which incoming packets are dropped," said Ramani. "We expect that the same improvements can be achieved on most Wi-Fi devices and using most applications, not just voice." SyncScan is also economical, because it can be deployed incrementally and implemented in software without requiring any changes to the 802.11 standard or any hardware upgrades.

Just over 110,000 VoWi-Fi handsets were sold in 2004, mostly in Japan. Vonage is set to roll it out commercially in the U.S. later this spring as an add-on to its popular VoIP service, and sales of dual-use phones incorporating both cellular and VoWi-Fi could reach $3 billion by 2009, according to a study by Infonetics Research.

Doug Ramsey | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht Underwater acoustic localization of marine mammals and vehicles
23.11.2017 | IMDEA Networks Institute

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>