Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the intelligent workspace a reality

05.04.2005


“Our plan is to have ‘the’ operating system for buildings.” So says Richard Green, CEO of the newly-established Cambridge (UK) start-up Ubisense, about his company’s revolutionary new technology for locating staff within the workspace environment.



Green is one of the five entrepreneurs who founded the company in May 2002, and who have since seen their company more than double in size and rapidly establish a client-base in Europe, the US and the Far East. “Basically, Ubisense makes the buildings and spaces that people inhabit and work in fully programmable – so that whatever you do can be perceived by the computer system and enable it to react accordingly,” says Chief Product Officer Peter Steggles.

Accurate and scaleable


Ubisense technology is composed of a real-time software platform, a network of UWB (ultra wideband) sensors, and a series of tags worn by staff or attached to objects within the workspace. Unlike systems based on conventional radio-frequency technology, which can have problems with accuracy and penetration of walls, the Ubisense system relies on short-duration UWB pulses that can locate, in real time, staff and equipment to within 15 cm.

The technology has no limits on the size of the area covered or the number of people and objects located – it can be used for anything from a small lab-wide solution to a complete distributed campus. “The real advantage of UWB compared to ultrasonics is that we can offer similar accuracy with a much lower level of infrastructure,” says Steggles, pointing out that one US customer has 40 of the Ubisense UWB sensors to cover an area of 1000m2.

Experience gained in EU project

The Ubisense founders gained at least some of their ideas while working in previous lives for AT&T Labs in Cambridge, which was a participant in the SANE IST project. SANE investigated ways of improving virtual working environments by giving a sense of shared space; AT&T Labs brought in their ultrasonic technology to provide a location-sensing capability.

“We were brought in by SANE project partner DEGW, the workplace design consultancy, to help with a study on location technology,” says Steggles. “The real result for us from our participation in the project was the networking benefit – it opened our eyes to the potential market for this type of technology.” Thanks in part to that early experience, Green and his partners have been able to launch what is the first commercially available location-sensing platform that offers a cost-effective solution to the market.

Customers include Fortune 500

Ubisense now has a staff of 14 people, and customers that include Fortune 500 companies as well as leading universities around the world. Its client-base is active in areas such as workplace design, healthcare, security and military training, and the company works with partners to apply the Ubisense platform to many other specialist markets.

Ubisense UWB technology is patented and has already been certified by the US Federal Communications Commission. In the European Union, consultations are due to start on establishing Europe-wide regulatory approval for UWB this year.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>