Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Making the intelligent workspace a reality


“Our plan is to have ‘the’ operating system for buildings.” So says Richard Green, CEO of the newly-established Cambridge (UK) start-up Ubisense, about his company’s revolutionary new technology for locating staff within the workspace environment.

Green is one of the five entrepreneurs who founded the company in May 2002, and who have since seen their company more than double in size and rapidly establish a client-base in Europe, the US and the Far East. “Basically, Ubisense makes the buildings and spaces that people inhabit and work in fully programmable – so that whatever you do can be perceived by the computer system and enable it to react accordingly,” says Chief Product Officer Peter Steggles.

Accurate and scaleable

Ubisense technology is composed of a real-time software platform, a network of UWB (ultra wideband) sensors, and a series of tags worn by staff or attached to objects within the workspace. Unlike systems based on conventional radio-frequency technology, which can have problems with accuracy and penetration of walls, the Ubisense system relies on short-duration UWB pulses that can locate, in real time, staff and equipment to within 15 cm.

The technology has no limits on the size of the area covered or the number of people and objects located – it can be used for anything from a small lab-wide solution to a complete distributed campus. “The real advantage of UWB compared to ultrasonics is that we can offer similar accuracy with a much lower level of infrastructure,” says Steggles, pointing out that one US customer has 40 of the Ubisense UWB sensors to cover an area of 1000m2.

Experience gained in EU project

The Ubisense founders gained at least some of their ideas while working in previous lives for AT&T Labs in Cambridge, which was a participant in the SANE IST project. SANE investigated ways of improving virtual working environments by giving a sense of shared space; AT&T Labs brought in their ultrasonic technology to provide a location-sensing capability.

“We were brought in by SANE project partner DEGW, the workplace design consultancy, to help with a study on location technology,” says Steggles. “The real result for us from our participation in the project was the networking benefit – it opened our eyes to the potential market for this type of technology.” Thanks in part to that early experience, Green and his partners have been able to launch what is the first commercially available location-sensing platform that offers a cost-effective solution to the market.

Customers include Fortune 500

Ubisense now has a staff of 14 people, and customers that include Fortune 500 companies as well as leading universities around the world. Its client-base is active in areas such as workplace design, healthcare, security and military training, and the company works with partners to apply the Ubisense platform to many other specialist markets.

Ubisense UWB technology is patented and has already been certified by the US Federal Communications Commission. In the European Union, consultations are due to start on establishing Europe-wide regulatory approval for UWB this year.

Tara Morris | alfa
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>