Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surf’s up: Professor using models to predict huge waves

16.02.2005


If you’re a ship captain and there might be 50-foot waves headed your way, you’d appreciate some information about them, right? That’s the idea behind a wave model system a Texas A&M University at Galveston professor has developed. His detailed wave prediction system is currently in use in the Gulf of Mexico and the Gulf of Maine.



Vijay Panchang, head of the Department of Maritime Systems Engineering, doesn’t make waves - he predicts what they’ll do, when they’ll do it and how high they’ll get. Using data provided daily from NOAA and his own complex mathematical models, Panchang and research engineer Doncheng Li provide daily wave model predictions for much of the Texas coast, the Gulf of Mexico and the Gulf of Maine. Their simulations, updated every 12 hours, provide a forecast for two days ahead. "The models we provide are based on very detailed information, such as seabed topography, offshore wave conditions, wind speed and direction and other factors," Panchang explains.

"It’s useful information for anyone in coastal waters. Texas has a huge coastline, and Maine has more than 3,000 miles of coast. Recreational and fishing boats, cruise ships, commercial ships, and others can use this information. Coastal wave information can also be used to predict sediment transport and for engineering design." Because the models use wind data, tsunamis that are created by undersea earthquakes can’t be predicted. But that’s not to say his modeling system doesn’t come up with some big waves. His wave model predicted big waves in November 2003 in the Gulf of Maine, and it was accurate - waves as high as 30 feet were recorded during one storm even in coastal regions.


Last summer during Hurricane Ivan, a buoy located 60 miles south of the Alabama coast recorded a whopping 60-foot wave. "There may have been higher waves because right after recording the 60- foot wave, the buoy snapped and stopped functioning," he says. "Also, the 50-foot wave is an average measure of the sea-state, and the highest waves could be nearly twice as big. Waves during storms can be quite high, and 50-foot waves are not uncommon," Panchang reports. He notes that during a storm in 1995 off the Halifax coast, the captain of the Queen Elizabeth II reported a monstrous 95-foot wave.

Panchang is also developing a similar wave model prediction system for the Prince William Sound Oil Recovery Institute in the Alaska port of Valdez, site of the Exxon Valdez oil spill. That wave model system should be online by next year.

Anyone on the water wants to know how high the waves will be when they out at sea," he says. "We provide a valuable service to those on ships and boats who want to know what the wave conditions will be like in the next 24 hours."

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>