Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards a truly clever Artificial Intelligence

04.02.2005


A pioneering new way of creating computer programs could be used in the future to design and build robots with minds that function like that of a human being, according to a leading researcher at The University of Reading.

Dr James Anderson, of the University’s Department of Computer Science, has developed for the first time the ‘perspective simplex’, or Perspex, which is a way of writing a computer program as a geometrical structure, rather than as a series of instructions.

Not only does the invention of the Perspex make it theoretically possible for us to develop robots with minds that learn and develop, it also provides us with clues to answer the philosophical conundrum of how minds relate to bodies in living beings.



A conventional computer program comprises of a list of instructions, and if one of those instructions goes missing or is damaged then the whole program crashes. However, with the Perspex, the program works rather like a neural network and is able to bridge gaps and continue running and developing even when it sustains considerable damage.

"All computer programs can be written in terms of the Perspex. Essentially, it is a new, geometrical computer instruction that looks like an artificial neuron. Any existing computer program can be compiled into a network of these neurons".

The Perspex links the geometry of the physical world with the structure of computations so, to the extent that mind is computable, the Perspex provides one solution to the centuries-old problem of how mind arises in physical bodies.

"Perspexes exist in a mathematical space called ‘perspex space’. Perspex space can describe the ordinary space we live in, along with all of the physical bodies that make up our space, and all of the minds that arise from physical bodies. It provides a model that is accurate enough for a robot to use to describe its own mind and body".

Perspex programs show the very human trait of periodic recovery and relapse when they are damaged; perhaps for the same reason. The Perspex tells us how mind can relate to body so the geometrical properties that govern a Perspex program’s injury and recovery also apply to us because our bodies exist in space. We share a common geometry, and this has implications for our minds and bodies. For the first time, the Perspex makes computer programs prone to injury, illness, and recovery like a human being. And a computer program that continues developing despite damaged, erroneous, and lost data means that, in the future, we could have computers that are able to develop their own minds despite, or because of, the rigours of living in the world.

“The Perspex allows global reasoning to be attained with just one initial instruction. So a Perspex program can operate on the whole of a problem before it attends to the myriad of detail. This is very much like human strategic thinking. It arises from the geometry of the Perspex, not from the specific detail of the program that is being run. This tells us that strategic thinking can be a property of the way our brains are constructed and is not necessarily to do with the substance of what we happen to be thinking about. It might be that some people are better at strategic thinking than others because of the geometry of their brains."

Craig Hillsley | alfa
Further information:
http://www.reading.ac.uk

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>