Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards a truly clever Artificial Intelligence

04.02.2005


A pioneering new way of creating computer programs could be used in the future to design and build robots with minds that function like that of a human being, according to a leading researcher at The University of Reading.

Dr James Anderson, of the University’s Department of Computer Science, has developed for the first time the ‘perspective simplex’, or Perspex, which is a way of writing a computer program as a geometrical structure, rather than as a series of instructions.

Not only does the invention of the Perspex make it theoretically possible for us to develop robots with minds that learn and develop, it also provides us with clues to answer the philosophical conundrum of how minds relate to bodies in living beings.



A conventional computer program comprises of a list of instructions, and if one of those instructions goes missing or is damaged then the whole program crashes. However, with the Perspex, the program works rather like a neural network and is able to bridge gaps and continue running and developing even when it sustains considerable damage.

"All computer programs can be written in terms of the Perspex. Essentially, it is a new, geometrical computer instruction that looks like an artificial neuron. Any existing computer program can be compiled into a network of these neurons".

The Perspex links the geometry of the physical world with the structure of computations so, to the extent that mind is computable, the Perspex provides one solution to the centuries-old problem of how mind arises in physical bodies.

"Perspexes exist in a mathematical space called ‘perspex space’. Perspex space can describe the ordinary space we live in, along with all of the physical bodies that make up our space, and all of the minds that arise from physical bodies. It provides a model that is accurate enough for a robot to use to describe its own mind and body".

Perspex programs show the very human trait of periodic recovery and relapse when they are damaged; perhaps for the same reason. The Perspex tells us how mind can relate to body so the geometrical properties that govern a Perspex program’s injury and recovery also apply to us because our bodies exist in space. We share a common geometry, and this has implications for our minds and bodies. For the first time, the Perspex makes computer programs prone to injury, illness, and recovery like a human being. And a computer program that continues developing despite damaged, erroneous, and lost data means that, in the future, we could have computers that are able to develop their own minds despite, or because of, the rigours of living in the world.

“The Perspex allows global reasoning to be attained with just one initial instruction. So a Perspex program can operate on the whole of a problem before it attends to the myriad of detail. This is very much like human strategic thinking. It arises from the geometry of the Perspex, not from the specific detail of the program that is being run. This tells us that strategic thinking can be a property of the way our brains are constructed and is not necessarily to do with the substance of what we happen to be thinking about. It might be that some people are better at strategic thinking than others because of the geometry of their brains."

Craig Hillsley | alfa
Further information:
http://www.reading.ac.uk

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>