Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ESI Group releases PAM-STAMP 2G 2004


ESI Group released today, at the EuroPAM conference, PAM-STAMP 2G version 2004, a cost-efficient sheet-metal stamping simulation software, which offers web-based reporting tools and advanced parametric re-engineering capabilities. PAM-STAMP 2G includes PAM-DIEMAKER for fast design and optimization of binder surface and die-addendum, PAM-QUIKSTAMP for rapid stamping evaluation, and PAM-AUTOSTAMP for forming process validation as well as quality and tolerance control. Offering unmatched business value, the 2004 version has been intensively tested by ESI Group’s customers in the Americas, Asia and Europe.

PAM-STAMP 2G 2004 introduces several new features aimed at increasing user productivity: advanced parametric re-engineering capabilities enable users to capitalize on previous experiences and to retrofit existing models; and web-based reporting tools allow information sharing in a true collaborative engineering environment. Other significant enhancements include blank size optimization, robust design assessment, fast, accurate springback simulation and an improved Distributed-Parallel-Processing solver with full interoperability for multi-stage forming.

"With our new business model based on flexible tokens, our customers will have immediate access to all modules of PAM-STAMP 2G, in particular the ’Stamp Professional’ pack. This new version brings unmatched added value, enabling a significant step forward to answer the industry’s need for full die line simulation," said Dr Fouad El Khaldi, Product Operations Manager, ESI Group.

Several significant enhancements have been implemented in the 2004 version to improve the overall ease of use. Web-enabled reporting tools allow the sharing of information such as images, annotations, text and 3D models, thus supporting a truly collaborative engineering environment. Multi-stage and multi-project post-processing features enable users to check the entire virtual manufacturing process in one single session.

PAM-DIEMAKER’s new features include the projection of the flanges onto the addendum surface in order to obtain a 3D dimensional description of the trim line. Interactive binder surface modification allows for extremely flexible surface manipulation in both 2D and 3D, using an unlimited amount of sections in any direction. The new re-engineering module allows users to capitalize on previous die design experiences by reconstructing a parametric surface model based on existing tooling, and to retrofit a new part design into the parametric die model.

Users can then quickly verify tool feasibility using PAM-QUIKSTAMP - through easy set-up, the user defines all parameters and stages of the forming process for the selected press. Ready-to-use templates are available for most pressing processes and other models can be created using the Stamp Toolkit. Blank shape optimization has been improved, providing better estimation of the blank size and reducing material waste.

The die design function has been extended to support the trimming stages of a die line-up. A completely new trim process optimization module has been integrated, which can reduce the time taken to assess and optimize trimming operations. This feature can be used separately from PAM-DIEMAKER.

PAM-AUTOSTAMP’s new features allow the simulation of several new process types, including flanging, double blanks, spotwelds, superplastic forming, and rubber pad forming. The 2004 version has improved drawbead modelling, now incorporating thinning and strain effects, edge effects, and a more precise lockbead. Tube hydroforming simulation provides a simplified tube bending option, as well as multistage macro templates for most common tube forming processes.

The new version of the PAM-AUTOSTAMP Distributed Memory Parallel solver offers a significant reduction in processing time, which fulfils the industry requirements in terms of repeatability, data interoperability, and CPU scalability. The 2004 version includes the precise contact suitable for the springback forming process, as well as solid elements.

PAM-STAMP 2G version 2004 is available on selected Windows, Unix, and Linux platforms that are hardware-vendor supported.

About ESI Group

ESI Group is a pioneer and world leading provider of digital simulation software for prototyping and manufacturing processes that take into account the physics of materials. ESI Group has developed an entire suite of coherent, industry-oriented applications to realistically simulate a product’s behaviour during testing, to fine-tune the manufacturing processes in synergy with the desired product performance, and to evaluate the environment’s impact on product usage.

ESI Group’s product portfolio, which has been industrially validated and combined in multi-trade value chains, represents a unique collaborative, virtual engineering solution, known as the Virtual Try-Out Space (VTOS), enabling a continuous improvement on the virtual prototype. By drastically reducing costs and development lead times, VTOS solutions offer major competitive advantages through progressively eliminating the need for physical prototypes.

With revenues close to €49 million in fiscal year 2003, ESI Group (Nouveau Marché: Euronext Paris - Software - Euroclear 6584 - Bloomberg ESI FP - Reuters ESIG.LN) employs almost 500 high-level specialists worldwide. The company and its global network of agents provide sales and technical support to customers in more than 30 countries.

Virtual Try-Out Space(r) and VTOS(r) are registered trademarks of ESI Group. All other products, names and companies mentioned in this press release are trademarks or registered trademarks of their respective owners.

Kate Ambler | FTPB Press Bureau
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>