Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University Jaume I researchers at work on EU project to improve video game realism

13.12.2004


A group of researchers from the Department of Computer Languages and Systems at the Universitat Jaume I is taking part in a project to improve realism in video games. The goal is to design software that makes the task of game programmers easier so that they can create more credible environments without having to carry out complex operations. The research, which has received financial help of 1,649,000 euros from the European Commission and is to last for 33 months, involves 11 other members from Spanish and European universities, and from companies from this sector.

So far, game design has not presented any special difficulties for companies because the techniques used have been somewhat rudimentary. Nowadays, however, the need to improve video game realism requires more complex applications. The UJI and the other universities involved will work on turning the complex formulas already existing in the laboratory into usable programmes that will improve the degree of realism in three basic aspects: geometry, lighting and visibility.

”Our idea is to develop the technology that was used in very complex workstations so that it is immediately accessible on PCs or on low cost platforms”, explains Miguel Chover, responsible for the project at the UJI. “Our objective is to create software so that video game programmers can simplify their tasks and work with more complex models and more realistic lighting techniques without having to develop their own algorithms. That is, what we do is a sort of algorithms bookstore”, added Chover.



The University of Girona, together with the University of Budapest, will be in charge of improving video game lighting; the University of Vienna will work on visibility; and the Universitat Jaume I de Castellón, the Polytechnic University of Valencia and the University of Limoges will improve the realism of the geometry of the objects on screen and their movements.

”We work with multiresolution models, which are a tool that allows the programmer to change the level of detail automatically. In this way, a designer designs a character, the programmer captures it and puts it into our algorithm data structure. It then automatically changes its level of detail without the programmer having to generate the algorithms. This is all done while at the same time the transition of geometry is made smooth so that everything is more realistic and jumps do not occur when a character goes from a more distant to a nearer plane”, explained Chover. The applications concerning lighting and visibility will have the same effects.

Companies from the videogame and the virtual reality sectors, and the Research Association from the Toy Industry are also taking part in the project. The role of the companies is to expose their needs and test to see whether the solutions provided by researchers are well adapted to the applications in the world of industry.

In Spain, 47% of the population between 13 and 34 years old are habitual video game users, a percentage which can be seen in the income level of the industry. Last year this sector had a turnover of 800 million euros with a 12% growth, whereas the cinema box-office takings was 636 million, an increase of only 2%.

Hugo Cerdà | alfa
Further information:
http://www.gametools.org
http://www.uji.es

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>