Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University Jaume I researchers at work on EU project to improve video game realism

13.12.2004


A group of researchers from the Department of Computer Languages and Systems at the Universitat Jaume I is taking part in a project to improve realism in video games. The goal is to design software that makes the task of game programmers easier so that they can create more credible environments without having to carry out complex operations. The research, which has received financial help of 1,649,000 euros from the European Commission and is to last for 33 months, involves 11 other members from Spanish and European universities, and from companies from this sector.

So far, game design has not presented any special difficulties for companies because the techniques used have been somewhat rudimentary. Nowadays, however, the need to improve video game realism requires more complex applications. The UJI and the other universities involved will work on turning the complex formulas already existing in the laboratory into usable programmes that will improve the degree of realism in three basic aspects: geometry, lighting and visibility.

”Our idea is to develop the technology that was used in very complex workstations so that it is immediately accessible on PCs or on low cost platforms”, explains Miguel Chover, responsible for the project at the UJI. “Our objective is to create software so that video game programmers can simplify their tasks and work with more complex models and more realistic lighting techniques without having to develop their own algorithms. That is, what we do is a sort of algorithms bookstore”, added Chover.



The University of Girona, together with the University of Budapest, will be in charge of improving video game lighting; the University of Vienna will work on visibility; and the Universitat Jaume I de Castellón, the Polytechnic University of Valencia and the University of Limoges will improve the realism of the geometry of the objects on screen and their movements.

”We work with multiresolution models, which are a tool that allows the programmer to change the level of detail automatically. In this way, a designer designs a character, the programmer captures it and puts it into our algorithm data structure. It then automatically changes its level of detail without the programmer having to generate the algorithms. This is all done while at the same time the transition of geometry is made smooth so that everything is more realistic and jumps do not occur when a character goes from a more distant to a nearer plane”, explained Chover. The applications concerning lighting and visibility will have the same effects.

Companies from the videogame and the virtual reality sectors, and the Research Association from the Toy Industry are also taking part in the project. The role of the companies is to expose their needs and test to see whether the solutions provided by researchers are well adapted to the applications in the world of industry.

In Spain, 47% of the population between 13 and 34 years old are habitual video game users, a percentage which can be seen in the income level of the industry. Last year this sector had a turnover of 800 million euros with a 12% growth, whereas the cinema box-office takings was 636 million, an increase of only 2%.

Hugo Cerdà | alfa
Further information:
http://www.gametools.org
http://www.uji.es

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>