Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic optic fibres

29.11.2004


Plastic optic fibres are 1-millimetre diameter threads, similar to a guitar string. Nowadays, optic fibres are used in the home, cars, trains and aeroplanes, for example.



How is the information transmitted?

At one end of the fibre the light source, either LED or laser, is attached. Lasers are faster and, thereby, can send greater quantities of information; but they are also more expensive.


Light emanating from the source will immediately propagate through the fibre and arrive at the other end where a receptor system is installed. Here this signal is interpreted as a 1. But, if the light beam is interrupted, the signal will not arrive at the receptor and, as a result, this will read 0. This is how images, texts and all kinds of digital information are transmitted, given that, in digital systems, information is codified by means of a binary system of ones and zeros.

Apart from transmitting information, optic fibres can also be used to make sensors. For example, in the automotive sector, they are regularly used in car safety systems such as indicating the need to change the engine oil.

The sensor immersed in the oil will be subjected to variations in the quantity of light transmitted depending on the increase in impurities in the oil. Thus, the moment there is no longer sufficient light getting to the receptor is when this sends a signal to change the oil. This is just one example of the use of an optic fibre sensor, but there are many more.

All advantages

Apart from having an infinity of applications, plastic optic fibres have many advantages: they are cheap, being made of metacrylate, a very common plastic. The connectors required are also cheap and simple. The fibres are light, a car weighing up to 50 kg less if the wiring is carried out with plastic fibres. And perhaps the most important advantage: the transported signal does not produce interference given that the electromagnetic fields and the rest of the electrical signals do not influence the plastic.

However, there are disadvantages also. They are not suitable over large distances as they produce losses in the transmission of light. As a consequence, the optic fibres have a maximum of one kilometre length; for longer distances glass optic fibres are used. Moreover, they cannot operate at temperatures greater than 80º C, given that the plastic melts and the fibre loses the transparency necessary for correctly transmitting the light. Finally, if there are many buckles or curves along the way, there are also losses of light at these points.

Research at the EHU (the University of the Basque Country)

At the School of Engineering in Bilbao a research team is working on plastic optic fibres. In their research they have designed software that simulates the way in which light is propagated down a plastic optic fibre, a tool that a number of companies already use. Moreover, they design and develop new devices or sensors based on plastic optic fibres. Finally, it should be pointed out that they have also worked with the automotive sector, analysing, above all, the losses produced in the wiring in the car at kinks and corners and, in this way, to be able to adapt the topology and minimise signal losses.

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com
http://www.ehu.es

More articles from Information Technology:

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

nachricht World first: 'Storing lightning inside thunder'
18.09.2017 | University of Sydney

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>