Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic optic fibres

29.11.2004


Plastic optic fibres are 1-millimetre diameter threads, similar to a guitar string. Nowadays, optic fibres are used in the home, cars, trains and aeroplanes, for example.



How is the information transmitted?

At one end of the fibre the light source, either LED or laser, is attached. Lasers are faster and, thereby, can send greater quantities of information; but they are also more expensive.


Light emanating from the source will immediately propagate through the fibre and arrive at the other end where a receptor system is installed. Here this signal is interpreted as a 1. But, if the light beam is interrupted, the signal will not arrive at the receptor and, as a result, this will read 0. This is how images, texts and all kinds of digital information are transmitted, given that, in digital systems, information is codified by means of a binary system of ones and zeros.

Apart from transmitting information, optic fibres can also be used to make sensors. For example, in the automotive sector, they are regularly used in car safety systems such as indicating the need to change the engine oil.

The sensor immersed in the oil will be subjected to variations in the quantity of light transmitted depending on the increase in impurities in the oil. Thus, the moment there is no longer sufficient light getting to the receptor is when this sends a signal to change the oil. This is just one example of the use of an optic fibre sensor, but there are many more.

All advantages

Apart from having an infinity of applications, plastic optic fibres have many advantages: they are cheap, being made of metacrylate, a very common plastic. The connectors required are also cheap and simple. The fibres are light, a car weighing up to 50 kg less if the wiring is carried out with plastic fibres. And perhaps the most important advantage: the transported signal does not produce interference given that the electromagnetic fields and the rest of the electrical signals do not influence the plastic.

However, there are disadvantages also. They are not suitable over large distances as they produce losses in the transmission of light. As a consequence, the optic fibres have a maximum of one kilometre length; for longer distances glass optic fibres are used. Moreover, they cannot operate at temperatures greater than 80º C, given that the plastic melts and the fibre loses the transparency necessary for correctly transmitting the light. Finally, if there are many buckles or curves along the way, there are also losses of light at these points.

Research at the EHU (the University of the Basque Country)

At the School of Engineering in Bilbao a research team is working on plastic optic fibres. In their research they have designed software that simulates the way in which light is propagated down a plastic optic fibre, a tool that a number of companies already use. Moreover, they design and develop new devices or sensors based on plastic optic fibres. Finally, it should be pointed out that they have also worked with the automotive sector, analysing, above all, the losses produced in the wiring in the car at kinks and corners and, in this way, to be able to adapt the topology and minimise signal losses.

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com
http://www.ehu.es

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>