Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Systems for prevention of drowsiness at the wheel

29.11.2004


The device, which analyses the brain waves of the driver, has been designed by the students at the Public University of Navarre and presented at the XVIII Technical Seminar on Automotion.



A system to prevent somnolence would be of great advantage for professional drivers, who spend many hours behind the steering wheel of their vehicle. It is estimate that sleepiness causes 1% of accidents.

The system was presented at the XVIII Technical Seminar on Automotion. This year’s edition concentrated on “Safety in the automobile”. The device, based on the analysis of brain waves, has been designed by six students at the Navarre University.


Analysis of waves in a PDA

The system thought up students at the Navarre Public University analyses the brain waves of the driver. This involves identifying the kinds of waves registered and if they are anomalous – indicating that they are falling asleep -, by a device which warns before an accident happens.

By means of magnetic field sensors located on the cranium, the device transmits data to a PDA – a small, pocket computer – which analyses the kinds of waves registered and acts in consequence. The sensors are located in a cap which maintains a certain pressure on the skull and which has a small device at the back which receives information from the sensors and directs them to the PDA. The connection between both is by radio-frequency as employing wires might be dangerous in case of an accident.

Once the data has been received, the PDA analyses the brain waves to see if they are normal or, on the contrary, if the driver is falling asleep. Then, in the latter case, other devices are triggered, still in the development stage, the aim of which will be to awaken and warn the driver or divert the vehicle from a possible accident.

Joint work with neurologists

For the design and development of this project, the Industrial Engineering faculty students were aided by neurologists at the Navarre University Hospital and were thus guided to the study of brain waves. In this way, five types of brain waves, according to their amplitude and frequency, have been described. As a person falls asleep, the amplitude of the waves increases and their frequency diminishes and, so, the types can be classified. A person is deemed in a state of somnolence if they are in the transition phase between alpha waves and theta waves. This is when the device is triggered into operation.

The authors of the project estimate that it the device would cost 4,500 euro, currently a very expensive item. For a private car it would be excessive but it would not be so for a professional driver – compared to what a bus or lorry costs. In this sense, the invention is aimed at this type of driver.

In the market there are other systems directed at detecting somnolence based on the analysis of the eye movements of the driver, by means of cameras, and which registers and activates according to rapid or confused blinking and the head nodding. Unlike these, the invention developed by the students at the Navarre Industrial Engineering Faculty has the advantage of detecting sleepiness prior to presenting these symptoms such as eye movement or nodding of the head.

The sensors are on the market but they are currently very expensive.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com
http://www.elhuyar.com

More articles from Information Technology:

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

nachricht Internet of things made simple: One sensor package does work of many
11.05.2017 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>