Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Systems for prevention of drowsiness at the wheel

29.11.2004


The device, which analyses the brain waves of the driver, has been designed by the students at the Public University of Navarre and presented at the XVIII Technical Seminar on Automotion.



A system to prevent somnolence would be of great advantage for professional drivers, who spend many hours behind the steering wheel of their vehicle. It is estimate that sleepiness causes 1% of accidents.

The system was presented at the XVIII Technical Seminar on Automotion. This year’s edition concentrated on “Safety in the automobile”. The device, based on the analysis of brain waves, has been designed by six students at the Navarre University.


Analysis of waves in a PDA

The system thought up students at the Navarre Public University analyses the brain waves of the driver. This involves identifying the kinds of waves registered and if they are anomalous – indicating that they are falling asleep -, by a device which warns before an accident happens.

By means of magnetic field sensors located on the cranium, the device transmits data to a PDA – a small, pocket computer – which analyses the kinds of waves registered and acts in consequence. The sensors are located in a cap which maintains a certain pressure on the skull and which has a small device at the back which receives information from the sensors and directs them to the PDA. The connection between both is by radio-frequency as employing wires might be dangerous in case of an accident.

Once the data has been received, the PDA analyses the brain waves to see if they are normal or, on the contrary, if the driver is falling asleep. Then, in the latter case, other devices are triggered, still in the development stage, the aim of which will be to awaken and warn the driver or divert the vehicle from a possible accident.

Joint work with neurologists

For the design and development of this project, the Industrial Engineering faculty students were aided by neurologists at the Navarre University Hospital and were thus guided to the study of brain waves. In this way, five types of brain waves, according to their amplitude and frequency, have been described. As a person falls asleep, the amplitude of the waves increases and their frequency diminishes and, so, the types can be classified. A person is deemed in a state of somnolence if they are in the transition phase between alpha waves and theta waves. This is when the device is triggered into operation.

The authors of the project estimate that it the device would cost 4,500 euro, currently a very expensive item. For a private car it would be excessive but it would not be so for a professional driver – compared to what a bus or lorry costs. In this sense, the invention is aimed at this type of driver.

In the market there are other systems directed at detecting somnolence based on the analysis of the eye movements of the driver, by means of cameras, and which registers and activates according to rapid or confused blinking and the head nodding. Unlike these, the invention developed by the students at the Navarre Industrial Engineering Faculty has the advantage of detecting sleepiness prior to presenting these symptoms such as eye movement or nodding of the head.

The sensors are on the market but they are currently very expensive.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com
http://www.elhuyar.com

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>