Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secret Of The Black Cube

22.11.2004


Moscow engineers have invented and produced a ’black box’ the size of a meccano brick which is able to record and memorise all details of movement of the object carrying the device. In fact, the device does not do it during its entire life-cycle but only within the last 15 seconds. However, these last seconds in particular are often the most important ones.



This device has been invented, produced and is being tested by engineers of the Moscow CONUS Company, specialising in the development of high-precision measuring devices. The device cannot be called a black box, it is rather a black cube.

The cube is small in dimensions – it is only 5 by 5 centimeters, its weight being only 200 grams. The cube is unable to record conversations. Instead, it is able to measure with surprising precision linear acceleration and angular velocity of any object the device is installed on. The device does not only measure acceleration and velocity in three projections, but it also memorises them. It storage is very “short” – it lasts only 15 seconds. However, when these seconds are the last ones before the accident, they turn out to be the most important.


Imagine the investigation of a traffic accident. The drivers, if they can talk, are trying to prove by all means that they acted correctly – they drove at the right speed, braked on time and evaded in the only possible way. Traffic policemen with a tape-measure are wandering around and gloomily scrutinizing tire traces on the asphalt. Eye-witnesses are being questioned. On the whole, the picture is rather subjective.

The ILUS-3 linear acceleration/angular velocity measuring device developed by the Moscow designers will allow to introduce an element of objectivity in such investigations, as the device is able to measure and record with high precision how traverse speed changes in all three directions – along all three mutually perpendicular axis.

The new device is based on piezo-sensitive sensors. If not going into detail, (the inventors do not share any details about the device at all), the device consists of quartz plates with microscopical weights, each of them being able to move in one of three mutually perpendicular directions. When moving, each on the weights presses down on its own crystal, electric characteristics of the crystal changing due to such mechanical compression. These changes can be amplified, digitised, measured and recorded. For this end, the device provides for respective amplifiers, analogue digitisers and microprocessor.

However, the details of the device are not the point – the details are easy to buy. The Muscovites were the first who have managed to invent the construction and to assemble it so that it could operate. “At least, we have never heard about anything similar, although we performed detail search, says Yuri Titov, head of the design. Analogues exist, they are of the “flight recorder” type, but these are very expensive and bulky units. Our device is rather simple to produce, it is small and is expected to be inexpensive.

Speaking about its use, it seems to prove useful not only for automobile drivers. For example, it can be used by sportsmen when polishing vaulting technique in gymnastics, acrobatics, figure skating or free-style. Our measuring device will be able to work based on electricity supply network, including motor-car network, and on battery. It will help to operate movement of strange and fabulous creatures in the cinema or attractions – including Disneyland being built now in Moscow.”

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Information Technology:

nachricht Researchers illuminate the path to a new era of microelectronics
23.04.2018 | Boston University College of Engineering

nachricht Researchers achieve HD video streaming at 10,000 times lower power
20.04.2018 | University of Washington

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>