Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secret Of The Black Cube

22.11.2004


Moscow engineers have invented and produced a ’black box’ the size of a meccano brick which is able to record and memorise all details of movement of the object carrying the device. In fact, the device does not do it during its entire life-cycle but only within the last 15 seconds. However, these last seconds in particular are often the most important ones.



This device has been invented, produced and is being tested by engineers of the Moscow CONUS Company, specialising in the development of high-precision measuring devices. The device cannot be called a black box, it is rather a black cube.

The cube is small in dimensions – it is only 5 by 5 centimeters, its weight being only 200 grams. The cube is unable to record conversations. Instead, it is able to measure with surprising precision linear acceleration and angular velocity of any object the device is installed on. The device does not only measure acceleration and velocity in three projections, but it also memorises them. It storage is very “short” – it lasts only 15 seconds. However, when these seconds are the last ones before the accident, they turn out to be the most important.


Imagine the investigation of a traffic accident. The drivers, if they can talk, are trying to prove by all means that they acted correctly – they drove at the right speed, braked on time and evaded in the only possible way. Traffic policemen with a tape-measure are wandering around and gloomily scrutinizing tire traces on the asphalt. Eye-witnesses are being questioned. On the whole, the picture is rather subjective.

The ILUS-3 linear acceleration/angular velocity measuring device developed by the Moscow designers will allow to introduce an element of objectivity in such investigations, as the device is able to measure and record with high precision how traverse speed changes in all three directions – along all three mutually perpendicular axis.

The new device is based on piezo-sensitive sensors. If not going into detail, (the inventors do not share any details about the device at all), the device consists of quartz plates with microscopical weights, each of them being able to move in one of three mutually perpendicular directions. When moving, each on the weights presses down on its own crystal, electric characteristics of the crystal changing due to such mechanical compression. These changes can be amplified, digitised, measured and recorded. For this end, the device provides for respective amplifiers, analogue digitisers and microprocessor.

However, the details of the device are not the point – the details are easy to buy. The Muscovites were the first who have managed to invent the construction and to assemble it so that it could operate. “At least, we have never heard about anything similar, although we performed detail search, says Yuri Titov, head of the design. Analogues exist, they are of the “flight recorder” type, but these are very expensive and bulky units. Our device is rather simple to produce, it is small and is expected to be inexpensive.

Speaking about its use, it seems to prove useful not only for automobile drivers. For example, it can be used by sportsmen when polishing vaulting technique in gymnastics, acrobatics, figure skating or free-style. Our measuring device will be able to work based on electricity supply network, including motor-car network, and on battery. It will help to operate movement of strange and fabulous creatures in the cinema or attractions – including Disneyland being built now in Moscow.”

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>