Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intruder Alert: Method Provides Double Computer Crime-Solving Evidence

18.11.2004


Like an episode of "CSI: Computers," a UF researcher has developed a technique that gives digital detectives twice the forensic evidence they now have to catch all kinds of hackers, from curious teenagers to disgruntled employees to agents of foreign governments.



Writing in the current issue of the International Journal of Digital Evidence, UF doctoral student Mark Foster proposes a new and improved method of computer crime solving, called “process forensics.” “If a guy walks into a bank and robs it, leaving footprints behind or his fingerprints on the counter, the forensic analyst would come in and find those traces of what happened,” said Foster. In the same way, process forensics merges two existing types of digital evidence – intrusion-detection and checkpointing technology – to give an investigator the most possible information to crack a case, said Foster, a computer science and engineering student conducting the research for his dissertation with UF professor of computer science Joseph Wilson, who co-wrote the paper. “If you detect the intruder – or even if you’re just suspicious that an intruder’s around – you start creating checkpoints,” Foster said. “And then later, those checkpoints will serve to give us some forensics.”

Checkpoints are essentially periodic snapshots of a running computer program, or process. Programmers use them as a safety backup – if the power goes out while a program is still running, they can return to the most recent checkpoint rather than starting over from the beginning.


Many current programs don’t have built-in checkpointing technology, creating more work for programmers, Foster said. So he developed a technique that automatically creates checkpoints within a program. After working separately on computer security and intrusion-detection software, he realized that combining checkpoints with intrusion detection would create an efficient forensics tool, he said. “If the photographs are taken at the right times, then we can see how they got in, what was tampered with,” Foster said.

Foster targets intruders who want to break into systems that are host-based – or centrally located in one primary computer, which is then linked to numerous satellite workstations. “You can have a scenario where user Bob – he’s malicious, he’s tired of class, and he wants to try to mess with everybody. In a multiuser environment, you’ve got to have boundaries set up and once you have those, somebody wants to come along and get through them.”

One way for an evil-minded hacker to break into a host-based computer system is to sneak in through a “hole,” a flaw in a running program the hacker can exploit to take control of the program, run his own programs or generally gum up the works, Foster said. This type of attack is called a buffer overflow attack, he said.

Current intrusion-detection software helps an investigator find out if someone has broken into a system, identifies the intruder and prevents future attacks. However, the software first has to learn the computer system well enough to detect anything out of the ordinary, such as unexpected changes to files and suspicious programs. Detection also can require more steps, such as additional software, modification of current software or preparing a program ahead of time for monitoring.

Foster’s process-forensics method also includes an intrusion-detection system that improves on current software by streamlining detection and eliminating the training phase. “This is definitely an area that is up-and-coming in forensics,” said John Leeson, an associate professor of computer science at the University of Central Florida and an editor of the International Journal of Digital Evidence. “I like the fact that he’s taking a proactive approach – forensics for years has been a reactive field.

“The idea is that you kind of need to know when something is happening before you start collecting information, or it’ll be a lot of useless information,” Leeson said. “Mark’s proposing a tool that could be activated by an automatic intrusion-detection system. I think that’s going to definitely enhance the value of digital forensics, to be able to deal with incidents as they are occurring.”

Computer forensics is a broad field. “A lot of times it’s recovering deleted files or looking for hidden files,” Foster said. “You have a child stalker who’s on the Internet stalking children, and they track him down, they confiscate his computer, and they say to the forensic guy, ’What kind of evidence can you get from his computer?’”

Foster said his method targets a different kind of computer abuse – intruders who want to hijack a running program. ”This is definitely kind of a different angle than the traditional stuff,” he said.

| newswise
Further information:
http://www.ufl.edu

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>