Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Los Alamos computers map hurricane utility impacts

11.11.2004


Predicting with uncanny accuracy the effects of recent hurricanes, Los Alamos National Laboratory computer models are helping the Department of Energy’s Office of Energy Assurance, the Federal Emergency Management Agency (FEMA) and other organizations plan for future disasters. For those in the paths of hurricane devastation, tools such as the Los Alamos infrastructure models could mean their lights and gas return to service hours or even days more rapidly.

"The comparison of actual effects to those predicted by the computer models was amazingly close, considering the variable storm tracks," said Steve Fernandez, leader of the Los Alamos Energy & Infrastructure Analysis team. Working to model electric power restoration across storm-damaged areas, the scientists have been able to provide detailed information to planners on the exact infrastructure impacts, a feat even more remarkable in that the models were run before the hurricanes made landfall.

The computer models were put to the test under fire as Hurricane Jeanne approached the Florida coast in September. Multi-agency teams assembled in the state emergency operations center in Tallahassee and the national emergency operations center in Washington. These command centers coordinated the evacuation and recovery activities as the hurricane approached and then moved through Florida and other southern regions. The models supplied updated predictions to the two centers and to the decision makers responding to the approaching storm.



Electric power restoration data became a key focus for FEMA’s first-response personnel, the groups that arrive immediately after the storm hits to provide the first emergency services (water, sanitation, communication). The Los Alamos outage maps helped with early identification of the areas needing first deployment and state of services FEMA staff would likely find when they arrived. A second FEMA team, responsible for energy issues and working closely with industry, state and local stakeholders, needed the Los Alamos data to help publicize the electric power conditions returning residents should be expecting, and to assist utility planning to restore electricity to the area. An outgrowth of the event is a potential collaborative effort with Florida Light and Power to help prepare their planners and responders for next year’s hurricane season.

The Los Alamos computer modeling effort for infrastructure protection has a core team of 40 staffers, and they run their simulations on a range of high-end desktop computers with enhanced graphic-processing capability, including laptops, desktops and cluster systems. Los Alamos has a strong history in the use of computer modeling to examine critical infrastructures and how their interconnected nature can make them vulnerable. From battlefield analysis to storm-impact studies, Los Alamos scientists have built tools that help planners and first responders make the best decisions in hard situations.

With the TRANSIMs traffic modeling tools, now commercialized, regional planners were given the ability to virtually explore different patterns of roadways, watching computerized commuters navigate through changing cityscapes.

Using EpiSims, scientists have explored such questions as how different smallpox vaccination plans would affect the spread of an outbreak, while Urban Atmospheric Transport models have predicted the spread of chemical and biological agents if released on the streets of a major city.

A prototype version of the Interdependent Energy Infrastructure Simulation System (IEISS) was used in preparation for the 2002 Salt Lake City Olympics, and now has matured to allow researchers to identify critical components and vulnerabilities in coupled infrastructure systems to assess how future investments in the systems might affect quality of service; perform integrated cost-benefit studies; evaluate the effects of regulatory policies; and aid in decision-making during crises.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos develops and applies science and technology to ensure the safety and reliability of the U.S. nuclear deterrent; reduce the threat of weapons of mass destruction, proliferation and terrorism; and solve national problems in defense, energy, environment and infrastructure.

Nancy Ambrosiano | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>