Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Godiva’s Speedy Ride: USC PIM Chip On Track to Beat Itanium


A critical benchmarking test indicates that a processing-in-memory (PIM) chip designed and prototyped at the University of Southern California’s Information Sciences Institute is delivering the speedup designers hoped.

A team of ISI computer scientists led by software specialist Mary Hall and chip designer Jeff Draper earlier this year successfully integrated the new PIM chip, called "Godiva," into a Hewlett-Packard Long’s Peak Server. Hall and Draper will discuss their work at the SC2004 High Performance Computing Conference Nov. 8-10 in Pittsburgh PA. The Godiva chip uses a DDR-DRAM interface and "the server uses it as if it were standard memory," said Hall.

ISI has completed StreamAdd benchmarking, which measures memory bandwidth, on a single Godiva chip running as part of the Long’s Peak system. The result: the measured throughput of the Godiva chip and the original-equipment Itanium chip is roughly the same. "But our chip uses only one hundredth the electrical power of the Itanium," noted Draper. Like other PIM chips, Godiva is an effort to minimize the communication bottleneck that takes place when processing chips have to go back and forth to separate memory chips to get data for computations, and then store the results. "The theory," said Draper, "is that a PIM chip can keep results and data in its own memory, resulting in dramatic gains in speed. We now see these results in actual benchmarking."

The system was benchmarked with only a single Godiva chip in place. But Hall notes that the chip was designed to be used in 8-chip configurations. "The bottom line is we will deliver 8 times the computing power using less than one tenth of the electricity." The mismatch goes farther. Because the Godiva effort was a proof-of-concept academic research project, the Godiva team used a relatively slow clock rate — one-sixth the rate of the Itanium. "A commercial implementation could operate at a state-of-the-art clock rate," said Hall, who added that benchmarking was continuing in other standard measures of performance.

"But we believe that for certain uses that demand high memory bandwidth, such as multimedia, complex scientific modeling and database access, and knowledge discovery, the existing Godiva chip will deliver at least the order-of-magnitude performance improvement that our initial design was aimed at achieving, and likely significantly more."

The 56-million transistor Godiva chip improves on an earlier PIM chip created in a previous ISI project called DIVA. Godiva added address translation and eight single-precision floating point units, and contains a memory interface compatible with DDR SDRAM memory buses. One of the largest chips ever realized in academia, Godiva was fabricated at Taiwan Semiconductor Manufacturing Corporation (TSMC) through ISI’s MOSIS chip brokerage

Besides Hall and Draper, the Godiva team includes ISI researchers Jacqueline Chame (Compiler and Application Benchmarking), Tim Barrett (System Integration), Jeff Sondeen (VLSI), Dale Chase (System Integration), Spundun Bhatt (Compiler and System Software), and many ISI graduate students.

Defense agencies including DARPA and the Air Force Research Laboratory (AFRL) funded the project.

Eric Mankin | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>