Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Godiva’s Speedy Ride: USC PIM Chip On Track to Beat Itanium

04.11.2004


A critical benchmarking test indicates that a processing-in-memory (PIM) chip designed and prototyped at the University of Southern California’s Information Sciences Institute is delivering the speedup designers hoped.

A team of ISI computer scientists led by software specialist Mary Hall and chip designer Jeff Draper earlier this year successfully integrated the new PIM chip, called "Godiva," into a Hewlett-Packard Long’s Peak Server. Hall and Draper will discuss their work at the SC2004 High Performance Computing Conference Nov. 8-10 in Pittsburgh PA. The Godiva chip uses a DDR-DRAM interface and "the server uses it as if it were standard memory," said Hall.

ISI has completed StreamAdd benchmarking, which measures memory bandwidth, on a single Godiva chip running as part of the Long’s Peak system. The result: the measured throughput of the Godiva chip and the original-equipment Itanium chip is roughly the same. "But our chip uses only one hundredth the electrical power of the Itanium," noted Draper. Like other PIM chips, Godiva is an effort to minimize the communication bottleneck that takes place when processing chips have to go back and forth to separate memory chips to get data for computations, and then store the results. "The theory," said Draper, "is that a PIM chip can keep results and data in its own memory, resulting in dramatic gains in speed. We now see these results in actual benchmarking."



The system was benchmarked with only a single Godiva chip in place. But Hall notes that the chip was designed to be used in 8-chip configurations. "The bottom line is we will deliver 8 times the computing power using less than one tenth of the electricity." The mismatch goes farther. Because the Godiva effort was a proof-of-concept academic research project, the Godiva team used a relatively slow clock rate — one-sixth the rate of the Itanium. "A commercial implementation could operate at a state-of-the-art clock rate," said Hall, who added that benchmarking was continuing in other standard measures of performance.

"But we believe that for certain uses that demand high memory bandwidth, such as multimedia, complex scientific modeling and database access, and knowledge discovery, the existing Godiva chip will deliver at least the order-of-magnitude performance improvement that our initial design was aimed at achieving, and likely significantly more."

The 56-million transistor Godiva chip improves on an earlier PIM chip created in a previous ISI project called DIVA. Godiva added address translation and eight single-precision floating point units, and contains a memory interface compatible with DDR SDRAM memory buses. One of the largest chips ever realized in academia, Godiva was fabricated at Taiwan Semiconductor Manufacturing Corporation (TSMC) through ISI’s MOSIS chip brokerage

Besides Hall and Draper, the Godiva team includes ISI researchers Jacqueline Chame (Compiler and Application Benchmarking), Tim Barrett (System Integration), Jeff Sondeen (VLSI), Dale Chase (System Integration), Spundun Bhatt (Compiler and System Software), and many ISI graduate students.

Defense agencies including DARPA and the Air Force Research Laboratory (AFRL) funded the project.

Eric Mankin | EurekAlert!
Further information:
http://www.usc.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>