Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Godiva’s Speedy Ride: USC PIM Chip On Track to Beat Itanium

04.11.2004


A critical benchmarking test indicates that a processing-in-memory (PIM) chip designed and prototyped at the University of Southern California’s Information Sciences Institute is delivering the speedup designers hoped.

A team of ISI computer scientists led by software specialist Mary Hall and chip designer Jeff Draper earlier this year successfully integrated the new PIM chip, called "Godiva," into a Hewlett-Packard Long’s Peak Server. Hall and Draper will discuss their work at the SC2004 High Performance Computing Conference Nov. 8-10 in Pittsburgh PA. The Godiva chip uses a DDR-DRAM interface and "the server uses it as if it were standard memory," said Hall.

ISI has completed StreamAdd benchmarking, which measures memory bandwidth, on a single Godiva chip running as part of the Long’s Peak system. The result: the measured throughput of the Godiva chip and the original-equipment Itanium chip is roughly the same. "But our chip uses only one hundredth the electrical power of the Itanium," noted Draper. Like other PIM chips, Godiva is an effort to minimize the communication bottleneck that takes place when processing chips have to go back and forth to separate memory chips to get data for computations, and then store the results. "The theory," said Draper, "is that a PIM chip can keep results and data in its own memory, resulting in dramatic gains in speed. We now see these results in actual benchmarking."



The system was benchmarked with only a single Godiva chip in place. But Hall notes that the chip was designed to be used in 8-chip configurations. "The bottom line is we will deliver 8 times the computing power using less than one tenth of the electricity." The mismatch goes farther. Because the Godiva effort was a proof-of-concept academic research project, the Godiva team used a relatively slow clock rate — one-sixth the rate of the Itanium. "A commercial implementation could operate at a state-of-the-art clock rate," said Hall, who added that benchmarking was continuing in other standard measures of performance.

"But we believe that for certain uses that demand high memory bandwidth, such as multimedia, complex scientific modeling and database access, and knowledge discovery, the existing Godiva chip will deliver at least the order-of-magnitude performance improvement that our initial design was aimed at achieving, and likely significantly more."

The 56-million transistor Godiva chip improves on an earlier PIM chip created in a previous ISI project called DIVA. Godiva added address translation and eight single-precision floating point units, and contains a memory interface compatible with DDR SDRAM memory buses. One of the largest chips ever realized in academia, Godiva was fabricated at Taiwan Semiconductor Manufacturing Corporation (TSMC) through ISI’s MOSIS chip brokerage

Besides Hall and Draper, the Godiva team includes ISI researchers Jacqueline Chame (Compiler and Application Benchmarking), Tim Barrett (System Integration), Jeff Sondeen (VLSI), Dale Chase (System Integration), Spundun Bhatt (Compiler and System Software), and many ISI graduate students.

Defense agencies including DARPA and the Air Force Research Laboratory (AFRL) funded the project.

Eric Mankin | EurekAlert!
Further information:
http://www.usc.edu

More articles from Information Technology:

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Rules for superconductivity mirrored in 'excitonic insulator'
08.12.2017 | Rice University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>