Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research helps protect airplane engines from drizzle --system to be tested at DIA this winter


Halloween weather has tricked, not treated, airport meteorologists the past two years in Denver. Heavy freezing drizzle--appearing to be harmless light drizzle--has cost airlines as much as $2 million in engine damage in a single storm as jets have waited for takeoff. Now Roy Rasmussen of the National Center for Atmospheric Research (NCAR) has developed a new system to identify the drizzle accurately. His research has enabled airlines to revise pilot training and on-ground procedures to avoid future damage. The new detection system will be installed this winter at Denver International Airport (DIA).

Rasmussen studied two cases of heavy freezing drizzle at DIA on October 31, 2002, and the same date in 2003. The two storms wreaked a total of $2.85 million in damage to 18 jet engines on United Airlines 737 aircraft. Trained meteorologists were on site throughout both events, but the freezing drizzle conditions were not accurately noted. In about half of all cases of freezing drizzle, the intensity is underreported, according to Rasmussen. "Freezing drizzle is hard to see and its intensity is hard to estimate visually," says Rasmussen. "Often it goes undetected because the droplets are so small." The typical droplet diameter is about half of a millimeter, or half the thickness of a compact disk.

Rasmussen has worked with United Airlines to alert pilots of 737 aircraft on the hazard, and the airline has changed its procedures as a result of his research. Formerly, if an airport meteorologist observed heavy freezing drizzle, engines were revved close to flying speed (called an engine run-up) every 30 minutes to throw off ice. "Now, if anyone says ’freezing drizzle,’ they do engine run-ups every ten minutes," says Rasmussen. "Airline people are sensitized to the possibility that freezing drizzle can cause engine damage."

The real-time freezing-drizzle detection system developed by Rasmussen and colleagues will be part of Weather Support for Decision Making (WSDM), a system now at DIA that offers minute-by-minute weather reports tailored to aviation users. WSDM data are displayed in a color-coded, user-friendly format that can be easily read by pilots and other non-meteorologists. WSDM also provides data on snow and unfrozen rain.

Freezing rain falls right past an idling jet engine, Rasmussen explains, but freezing drizzle falls at a much slower rate, so it gets sucked into the engine. The droplets freeze on contact, and the resulting ice builds up on the engine’s hub, or spinner. When the engine is revved up to takeoff speed, ice shards are thrown off the spinner into the rest of the engine.

In the two Denver storms, the major damage was to the delicate tips of the fan blades. These blades generate the lift that makes the plane fly, Rasmussen says. If they’re damaged, the plane loses thrust, because the blades are not at the correct angle to produce the maximum thrust. "It’s not particularly dangerous," says Rasmussen, "but they have to repair the damage, and that’s very costly."

Anatta | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>