Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research helps protect airplane engines from drizzle --system to be tested at DIA this winter

28.10.2004


Halloween weather has tricked, not treated, airport meteorologists the past two years in Denver. Heavy freezing drizzle--appearing to be harmless light drizzle--has cost airlines as much as $2 million in engine damage in a single storm as jets have waited for takeoff. Now Roy Rasmussen of the National Center for Atmospheric Research (NCAR) has developed a new system to identify the drizzle accurately. His research has enabled airlines to revise pilot training and on-ground procedures to avoid future damage. The new detection system will be installed this winter at Denver International Airport (DIA).



Rasmussen studied two cases of heavy freezing drizzle at DIA on October 31, 2002, and the same date in 2003. The two storms wreaked a total of $2.85 million in damage to 18 jet engines on United Airlines 737 aircraft. Trained meteorologists were on site throughout both events, but the freezing drizzle conditions were not accurately noted. In about half of all cases of freezing drizzle, the intensity is underreported, according to Rasmussen. "Freezing drizzle is hard to see and its intensity is hard to estimate visually," says Rasmussen. "Often it goes undetected because the droplets are so small." The typical droplet diameter is about half of a millimeter, or half the thickness of a compact disk.

Rasmussen has worked with United Airlines to alert pilots of 737 aircraft on the hazard, and the airline has changed its procedures as a result of his research. Formerly, if an airport meteorologist observed heavy freezing drizzle, engines were revved close to flying speed (called an engine run-up) every 30 minutes to throw off ice. "Now, if anyone says ’freezing drizzle,’ they do engine run-ups every ten minutes," says Rasmussen. "Airline people are sensitized to the possibility that freezing drizzle can cause engine damage."


The real-time freezing-drizzle detection system developed by Rasmussen and colleagues will be part of Weather Support for Decision Making (WSDM), a system now at DIA that offers minute-by-minute weather reports tailored to aviation users. WSDM data are displayed in a color-coded, user-friendly format that can be easily read by pilots and other non-meteorologists. WSDM also provides data on snow and unfrozen rain.

Freezing rain falls right past an idling jet engine, Rasmussen explains, but freezing drizzle falls at a much slower rate, so it gets sucked into the engine. The droplets freeze on contact, and the resulting ice builds up on the engine’s hub, or spinner. When the engine is revved up to takeoff speed, ice shards are thrown off the spinner into the rest of the engine.

In the two Denver storms, the major damage was to the delicate tips of the fan blades. These blades generate the lift that makes the plane fly, Rasmussen says. If they’re damaged, the plane loses thrust, because the blades are not at the correct angle to produce the maximum thrust. "It’s not particularly dangerous," says Rasmussen, "but they have to repair the damage, and that’s very costly."

Anatta | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>