Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-rate laser pulses could boost outdoor optical wireless performance

27.10.2004


Multi-rate, ultra-short laser pulses -- with wave forms shaped like dolphin chirps -- offer a new approach to help optical wireless signals penetrate clouds, fog and other adverse weather conditions, say Penn State engineers.



The new approach could help bring optical bandwidth, capable of carrying huge amounts of information, to applications ranging from wireless communication between air and ground vehicles on the battlefield to short links between college campus buildings to metropolitan area networks that connect all the buildings in a city.

Dr. Mohsen Kavehrad, the W. L. Weiss professor of electrical engineering and director of the Center for Information and Communications Technology Research, leads the study. He says, "The multi-rate approach offers many advantages. For example, lower rate signals can get through clouds or fog when high rate signals can’t. By sending the same message at several different rates, one of them can probably get through."


Rather than slowing communication down, the multi-rate approach has been shown in tests to achieve an average bit rate higher than conventional optical wireless links operating at 2.5 Gbps as well as providing an increased level of communication reliability by maintaining a minimum of one active link throughout channel conditions, he adds.

Kavehrad outlined his team’s new approach at the Optics East 2004 Conference in Philadelphia, Oct. 27, in a paper, "Ultra-short Pulsed FSO Communications System with Wavelet Fractal Modulation." He will also describe the system at the IEEE MILCOM conference in Monterey, California, on Nov. 1. His co-author is Belal Hamzeh, doctoral candidate in electrical engineering.

In optical wireless systems, also known as free-space optics (FSO), voice, video and/or data information is carried on line-of-sight, point-to-point laser beams. Outdoor FSO systems have been in use for over 30 years but are hampered by weather and other obstructions that prevent the transmitter and receiver from "seeing" each other.

Kavehrad explains that clouds and fog often clear abruptly providing brief windows for transmission, making pulsed delivery better suited to FSO. The new Penn State approach embeds data in ultra-short pulses of laser light, shaped via fractal modulation as wavelets, and then transmits the wavelets at various rates.

Belal says the wavelets are easy to generate. "We use holography to generate and separate the wavelets. You just generate the mother wavelet and then the others can be generated as a fraction of the transmission bit rate of the mother. They can all co-exist in the channel without interference," he notes.

The wavelets used by the Penn State team are Meyer’s Type which look like dolphin chirps. The wavelets minimize bandwidth waste and the ultra-short pulses are less likely to interact with rain or fog that could degrade the signal.

The researchers note that their proposed system ensures on-the-fly operation without the need for significant electronic processing. The project is supported by the Air Force Research Laboratory.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>