Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-rate laser pulses could boost outdoor optical wireless performance

27.10.2004


Multi-rate, ultra-short laser pulses -- with wave forms shaped like dolphin chirps -- offer a new approach to help optical wireless signals penetrate clouds, fog and other adverse weather conditions, say Penn State engineers.



The new approach could help bring optical bandwidth, capable of carrying huge amounts of information, to applications ranging from wireless communication between air and ground vehicles on the battlefield to short links between college campus buildings to metropolitan area networks that connect all the buildings in a city.

Dr. Mohsen Kavehrad, the W. L. Weiss professor of electrical engineering and director of the Center for Information and Communications Technology Research, leads the study. He says, "The multi-rate approach offers many advantages. For example, lower rate signals can get through clouds or fog when high rate signals can’t. By sending the same message at several different rates, one of them can probably get through."


Rather than slowing communication down, the multi-rate approach has been shown in tests to achieve an average bit rate higher than conventional optical wireless links operating at 2.5 Gbps as well as providing an increased level of communication reliability by maintaining a minimum of one active link throughout channel conditions, he adds.

Kavehrad outlined his team’s new approach at the Optics East 2004 Conference in Philadelphia, Oct. 27, in a paper, "Ultra-short Pulsed FSO Communications System with Wavelet Fractal Modulation." He will also describe the system at the IEEE MILCOM conference in Monterey, California, on Nov. 1. His co-author is Belal Hamzeh, doctoral candidate in electrical engineering.

In optical wireless systems, also known as free-space optics (FSO), voice, video and/or data information is carried on line-of-sight, point-to-point laser beams. Outdoor FSO systems have been in use for over 30 years but are hampered by weather and other obstructions that prevent the transmitter and receiver from "seeing" each other.

Kavehrad explains that clouds and fog often clear abruptly providing brief windows for transmission, making pulsed delivery better suited to FSO. The new Penn State approach embeds data in ultra-short pulses of laser light, shaped via fractal modulation as wavelets, and then transmits the wavelets at various rates.

Belal says the wavelets are easy to generate. "We use holography to generate and separate the wavelets. You just generate the mother wavelet and then the others can be generated as a fraction of the transmission bit rate of the mother. They can all co-exist in the channel without interference," he notes.

The wavelets used by the Penn State team are Meyer’s Type which look like dolphin chirps. The wavelets minimize bandwidth waste and the ultra-short pulses are less likely to interact with rain or fog that could degrade the signal.

The researchers note that their proposed system ensures on-the-fly operation without the need for significant electronic processing. The project is supported by the Air Force Research Laboratory.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Information Technology:

nachricht Quantum Technology for Advanced Imaging – QUILT
24.04.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Paint job transforms walls into sensors, interactive surfaces
24.04.2018 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Silicon as a new storage material for the batteries of the future

25.04.2018 | Power and Electrical Engineering

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>