Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From zzstructures to mSpaces: New ways to compare Web navigation tools

22.10.2004


Surfing the Web could become a much more effective experience thanks to new approaches endorsed at this year’s ACM (Association of Computing Machinery) Hypertext Conference.

In its current state, the commonly used link in a Web page allows people to search the Web and to use hyperlinks to jump from one page to another. The down side is that when people click links, pages load on top of one another and unless they can recall the route taken, it is easy to lose much of the content of the search along the way. For their comparison of new models, called Hyperstructures, for representing information on the Web, dr monica schraefel from the School of Electronics and Computer Science (ECS) at the University of Southampton and Michael Mc Guffin from the Department of Computer Science at the University of Toronto received an ACM SigWeb Special Research Distinction, Awarded for Excellent Presentation of Theoretical Concepts.

Their paper describes hyperstructures including zzstructures (developed by ECS Visiting Professor Ted Nelson) and mSpaces (developed by schraefel), in terms of graph theory. Hyperstructures allow hypertext information like the Web to be presented in ways that show not just the links between pages, but the multiple relationships between the information in the pages.



For instance, one view of a group of musicians might show how they are all from a particular country; another might show how they all create a particular style of music, or all had their first performance before they were six. The formalizing of hyperstructures into well-known graph-theoretic terms allowed the authors to make specific comparisons between zzstructures and mSpaces in particular. No such comparison, either formally or conceptually, between these hyperstructure approaches had been previously described.

The aim of creating both the formal descriptions and the resulting comparisons was to provide a clear means for designers to compare the attributes of these hyperstructures so that they could decide which approaches best suited their information design requirements.
dr schraefel comments: ‘By considering new models for representing information which go beyond generic organizing structures like the lists we see from a Google search, we can consider equally new approaches for representing hypermedia information spaces that let us explore the relationships among the information, rather than just the data in a page. Relationships within information let us develop different kinds of knowledge about something. We hope that our comparisons of how we can represent these relationships will act as the basis for designers to be able to make informed design decisions about the attributes they might want to use from these structures if they want to design richer information spaces than what the Web currently allows.’

Joyce Lewis | alfa
Further information:
http://eprints.ecs.soton.ac.uk/9230/
http://www.soton.ac.uk

More articles from Information Technology:

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>