Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved piloting of ships through oceans of information

20.10.2004


The passage of ships in and out of ports could be safer if only pilots and masters had online access to vessel traffic service (VTS) information. The IPPA system fulfils this need and received a warm approval from ships’ pilots and harbourmasters alike.



The objective of the IST programme-funded IPPA project was to tap into the VTS information and make it available to pilots and ships’ masters in a user-friendly graphical format.

On trial at three ports


The system was trialled at three different ports. "First of all, we went to Tromsø, in Norway," says Mike Hadley of QinetiQ and IPPA coordinator. "We chose this port because it didn’t have VTS, but instead we had full access to data from the Norwegian Coastal Directorate. We could extract the relevant information and make it available to ships’ masters and pilots. Next, we took the system to Rotterdam, which has one of the world’s most advanced VTS’; we encountered problems with sending all the track tables over AIS [Automatic Identification System] and so had to settle for a small proportion of the non-AIS targets in the vicinity of the trials vessel. However, this only served to bear out the project’s view that that this was not a proper use of AIS. Finally, we took the system to the port of Genoa, where we were able to transmit the entire traffic table without a hitch."

One of the participants in the trials, Captain Allan Johansen, was very positive. "I took part in the Tromsø demonstration, and the IPPA system fulfilled all its performance requirements. Tromsø was selected for the trial in order to prove the capabilities of IPPA when operating outside a specific VTS-controlled area. Feedback from participants in the trial was very positive, and useful suggestions were made regarding improvements the capability of the IPPA equipment. The Norwegian company, Norsk Data Senter [www.nds.as, based in Moss], is now putting IPPA equipment into production."

Helping to minimise human error

The cause of around 70 per cent of maritime accidents can be traced back to human error of one sort or another. When pilots assist vessels to move through a port, they rely on visual and auditory information, VHF radio communications and radar. The accuracy of this is often outside their control, and when groundings or collisions occur it can sometimes by put down to over reliance on this information. Matters aren’t helped by language problems or misinterpreted messages between vessels, and the terms VHF- and radar-assisted collisions are consequently sometimes heard.

Since 2002, the International Maritime Organisation (IMO) has made it mandatory for vessels to carry AIS equipment. Vessels use AIS to broadcast data, such as the vessel’s identity, course, speed and position; supplementary information can also be broadcast if needed, such as tide height and keel clearance. The rate at which this information is broadcast is determined by the vessel’s status; more frequent updates when the vessel is manoeuvring, fewer updates when it’s stationary.

AIS data is available to ships’ masters and pilots, but it is not user-friendly, nor is it integrated with the main navigation system. VTS, however, makes good use of all this information, and uses it to produce up-to-the-minute situation reports.

"AIS was sponsored by IMO as a safety device," says Hadley. "Supplementary data could be transmitted via AIS. However, it can easily become overloaded; at the port of Rotterdam, there are typically 500 tracks at any one time, as vessels move, moor, etc. It doesn’t really have the capacity to carry large amounts of supplementary information, something that will become even clearer when AIS spreads to smaller and inland waterways vessels."

"We decided quite early on in the project to use GPRS (GSM packet radio service) to provide a readily-available data link for non-AIS VTS information," adds Hadley. "With IPPA, pilots only have to take is a pilot suitcase, which contains the AIS and also a stand alone heading device based on GPS when they board vessels, and they can receive updates on the tracks of all vessels in port, meteorological and hydrographical reports, and other information."

Looking ahead for IPPA

"Everyone who has seen the system is very impressed,” comments Hadley. “I have been struck be the level of interest that people are taking, including the harbourmasters from some of the largest ports in Europe. So, although the project was initially driven by the needs of pilots, it’s finding growing acceptance by harbourmasters too. We have even received very positive comments from US and Panamanian pilots."

"The future of the IPPA system looks pretty good,” says Hadley. “HITT, with whom we worked in Rotterdam but unfortunately were not partners in the project, are developing a carry-aboard unit for pilots, and this reflects the enthusiasm of the pilots for this technology. The harbourmaster of Rotterdam devoted an entire seminar to how to get IPPA fully integrated with future VTS. Whereas AIS is primarily a safety-related system, IPPA enables ships’ masters and harbourmasters to operate more safely through greater efficiency. It enables ports to operate closer to their maximum throughput for given weather and tide conditions because a lot of the uncertainty about conditions has been removed."

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>