Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT research offers new perspective on port security

13.10.2004


Researchers at New Jersey Institute of Technology (NJIT) are putting a 21st century spin on a 19th century technology to make the nation’s ports and coastal waters safer. Airships -- known today mainly for advertising flyovers at football games -- are the core of a new coastal surveillance system in development for the Missile Defense Agency (MDA) of the U.S. Department of Defense. But the new models will bear little resemblance to their predecessors. These High Altitude Stratospheric Airships (HASAs) will be unmanned, stationary platforms 14 to 16 miles above the ground. At 500 feet long and 150 feet in diameter with a volume of 5 million cubic feet, the HASAs will be 25 times the size of a Goodyear blimp.




The airships will be equipped with an array of cutting-edge equipment for remote sensing, communications, and risk analysis of suspected threats -- and that’s where NJIT comes in. The university is partnering with StratCom International LLC to serve as the academic research and development base for the project.

NJIT’s component of the project is under the direction of Donald H. Sebastian, PhD, vice president of research and development and director of the university’s Homeland Security Technology Center. Sebastian says the project is a natural fit for NJIT. "We have expertise in the whole range of applicable technologies -- terahertz imaging, advanced materials technology for the airship skin, microelectromechanical systems (MEMS), intermodal freight transportation through our transportation centers, wireless telecommunications, and information-assurance systems. We’re also an agile university with a strong entrepreneurial character that allows us to respond quickly to an emerging need such as homeland security."


While the airship technology is driven by important defense applications, the impact on civilian life may be far greater. When production can be scaled to meet the need of widespread deployment, the airships will become an important layer of our telecommunications infrastructure, empowering a wide variety of applications based on mobile, bi-directional exchange of voice, video and data -- broadband access anywhere at any time. Closer in time, homeland-security applications ranging from first-responder communications for emergency response and command through border security and surveillance systems will be important markets for HASA technology.

One area of development that has been proposed to the federal Transportation Security Administration concerns "maritime domain awareness" -- pushing the national boundaries out to sea where problem cargo can be identified and handled far from our populated port cities. The primary focus of the project is shipping containers, considered to be among the most serious potential threats to homeland security. More than half of all U.S. trade travels in sealed containers 20 to 40 feet long, piled by the thousands onto ships for delivery to ports, where they are often transferred, unopened, to trucks and trains for shipping to secondary destinations. Some six to eight million containers arrive in U.S. ports annually, and fewer than four percent are ever inspected for contraband or dangerous materials.

"The threat is a serious one, but container traffic is also one of the keystones of the global economy," Sebastian says. According to recent statistics, $728 billion in goods were shipped in containers, accounting for nearly seven percent of the gross domestic product. Many American businesses are dependent on materials and components shipped from other nations. Equipped to scan quickly and remotely, the airships won’t disrupt commerce."

At an altitude of 70,000 feet, a HASA’s advanced radar would provide surveillance coverage over a surface area of 500,000 square miles. Advanced sensory technology in each cargo container would be in communication with the airship to ensure the integrity of the ship’s contents during transit. Unmanned air and sea craft would be controlled from the airship to provide additional surveillance and interdiction capabilities. The North American Aerospace Defense Command (NORAD) has recommended the stationing of 10 HASAs to cover all the continental borders of the United States.

Spearheading the airship project is Lieutenant General James A. Abrahamson, USAF-Retired, chairman and CEO of StratCom International LLC, who directed both the Space Shuttle program and "Star Wars" Strategic Defense Initiative. He founded StratCom in 1998 and partnered with Lockheed Martin to develop HASAs for the telecommunications industry. But after 9/11, defense agencies took an interest in stratospheric airships. Last September, Team Lockheed Martin, which includes StratCom, won an exclusive $40 million contract with the Missile Defense Agency for HASA design. Detailed plans will be submitted to MDA in June 2004 and, upon approval, the project will receive an additional $50 million to build and launch a prototype airship by July 2006. The final phase of testing and evaluation through July 2008 will receive another $9 million in funding.

A terahertz (THz) detection system that can be deployed inside cargo containers is central to the project. Already under study at NJIT, THz electromagnetic radiation can be used to detect and identify explosives and biological agents even concealed in sealed packages, since THz radiation is readily transmitted through plastics, clothing and other non-metals.

The team -- John Federici, PhD, and Dale Gary, PhD, professors of physics, and Robert Barat, PhD, professor of chemical engineering -- has developed imaging tools designed to provide wide-area surveillance for concealed explosives. They recently received a Phase II Small Business Innovative Research grant with their industrial collaborators, Picometrix, Inc., of Ann Arbor, Michigan, for commercial development of the terahertz detection system. For the airship project, they will develop miniaturized systems that can be deployed inside cargo containers, as well as artificial neural network algorithms to analyze the THz images for the presence of explosives. Various types of explosive agents will be studied to develop recognition of their THz signature.

"Although the THz system would not be able to determine the contents of a sealed metallic container, it will be able to detect the presence and size of a metal container inside the cargo container," Federici says. "Comparing images over time could suggest that a suspicious container had been placed on board."

NJIT will consult with partner, Secure Asset Reporting Services (SARS), on the development and installation of advanced in-container sensors. The team will expand upon the GPS-system developed by SARS for tracking maritime and other mobile assets with additional sensor technology to detect door openings, the breaking of container seals, movement inside containers, and chemical, biological and explosive threats. "We plan to see tracking and sensor arrays in every container entering or leaving U.S. waterways and on virtually all road and rail systems in the United States," Sebastian says.

Although by far the largest research initiative related to homeland security, the HASA project is one of some two dozen studies coordinated by NJIT’s Homeland Security Technology Center. Sebastian says that a public technological university has an important role in homeland security.

"We ran a survey last year in the New York Metropolitan area and found that nearly two out of three adults think it is likely that another act of terrorism will occur within this area," says Sebastian. "The vast majority expect information and protection to come from the government, especially from scientists and technology experts in public institutions. We saw this as a mandate for NJIT to apply its resources and expertise to New Jersey’s homeland security."

Sheryl Weinstein | EurekAlert!
Further information:
http://ww.njit.edu

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>