Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creating chaos for data security

08.10.2004


Within three years one of the most advanced data encryption systems developed to date could go into commercial use thanks to the work of OCCULT, and its gigantic strides forward in laser-based chaotic carriers to transmit data through fibre-optics.



The cutting-edge technique, which employs synchronised laser emitters and receivers to encrypt information at the hardware level, represents an important qualitative upgrade to existing security systems for protecting the transmission of data.

“Traditional systems rely on software encryption, which uses keys to code and decode information, but advances in computer processing speeds are putting data encrypted via this method at risk,” explains Claudio Mirasso, coordinator of the IST project OCCULT, at the University of the Balearic Islands in Spain. “Our idea therefore is to use hardware, i.e. the emitters and receivers of the information, to carry out the encryption, which can be used in combination with software encoding to create two levels of security.”


The technique researched and evaluated by the OCCULT project relies on having two sets of semiconductor lasers that are virtually identical to send and receive information over fibre-optic cables. The light transmitted by these lasers is non-linear and chaotic so only a receiver synchronised with the emitter can decode the data, making it almost impossible for the transmission to be decrypted by someone other than the intended recipient.

“Anyone wanting to break the encryption has to know as much as the people using it and have a virtually identical device,” Mirasso notes. “We’ve demonstrated that an extremely high level of security can be achieved because cracking the system would require adjusting 200 or 300 parameters.”

For high security transmissions the lasers would have to operate with a tolerance level of just 1 or 2 per cent, something that can only be achieved if they are made with the same equipment and the same components at the same time. “The lasers not only have to come from the same batch of semiconductors but literally be produced side-by-side because once you get further down the line the differences increase,” the project coordinator says. Having carried out laboratory evaluations of the system, the project partners are now looking to commence field trials, possibly under a new IST project.

Their continuing work could lead to an optical chaos encryption system being commercialised “in about three years,” Mirasso says, noting that the potential market is vast. “Because the technique can be used over existing fibre-optic cables, it would be relatively cheap to employ, with the only additional components being the emitter and receiver.”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>