Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chameleon-chip adapts itself and stays cool


A microprocessor adapting itself to the actual use and environment. That’s the way to keep the energy consumption of future ‘mobile companions’ within limits and be flexible at the same time. Paul Heysters, who finishes his PhD-research at the University of Twente on September 24, developed a new type of processor. His ‘Montium’ is a reconfigurable processor adapting itself towards low energy consumption. It is possible to get ten times better performance, with ten times lower energy consumption at the same time, according to Heysters. He did his research at the Centre for Telematics and Information Technology of the University of Twente in The Netherlands.

Without energy-saving measures, they get real miniature stoves in your pocket, the mobile equipment of the future. They will be packed with a lot of functions, for which users need separate devices now. Including broadband mobile communication, GPS, navigation, camera, audio and video, ranging to full electronic driving license and passport. Fully profit from all these features means using a lot of energy. An application-specific chip (ASIC) would be the most energy-economic solution, but it is not flexible at all. That’s why Heysters chooses reconfigurability: he lets the hardware adapt itself to the use that’s made of it. The Montium – in animal world a rare chameleon species- is a processor that is capable of this. And it consumes far less power.


Future mobile equipment has to, for example, be able to adapt to the network environment it is currently working is. Do you prefer a broadband connection and do you happen to be in a WiFi environment, than the chip will enable a WiFi connection. Is it just GSM/GPRS you can rely on at the moment, it chooses this connection. Without having fixed chips for all these standards onboard. Or: when you are just looking into your electronic diary, you don’t need sophisticated video functions.

The approach Heysters chooses is a ‘tiled’ one. His processor is not a huge generic one, capable of every possible task, but it consists of tiles that can be switched on or off depending on the desired function. Tiles are available for digital signal processing (DSP), for specific tasks and small general purpose processors. Every type of tiles is available in a repeated pattern.

This approach is really different from developing an ‘economic’ or ‘mobile’ version of a regular processor, Heysters states. In those cases, usually some adjustments are made to the power supply voltage or clock frequency. But in essence, the processor still is highly overdimensioned for the tasks it has to perform. What Heysters proposes is changing the hardware architecture based on the algorithm. This works: in a complex task like calculating a fast Fourier Transform, the Montium performs ten times better than a generic processor for mobile use, while it consumes ten times less energy. It would consume hundreds of times less than a Pentium, but this comparison is not fair: a Pentium would never be economic enough for a handheld device and get far to warm.

Worldwide, there are efforts going on for these energy-saving strategies. The Montium approach can be succesful in this, according to Heysters. One of the true success factors is that good design tools become available: designers have to be able to do their work on a high level of abstraction, without having to bother about the hardware underneath. Promising steps have been made in the group Heysters is working in. Industry is interested in his approach, and in fabricating a prototype chameleon-chip consisting of nine Montium tiles.

Wiebe van der Veen | alfa
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>