Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC unveils world’s most powerful MRI for decoding the human brain

21.09.2004


The University of Illinois at Chicago unveiled today the world’s most powerful magnetic resonance imaging machine for human studies, capable of imaging not just the anatomy but metabolism within the brain.



This advanced technology ushers in a new age of metabolic imaging that will help researchers understand the workings of the human brain, detect diseases before their clinical signs appear, develop targeted drug therapies for illnesses like stroke and provide a better understanding of learning disabilities.

Central to the technology is a 9.4-tesla magnet, larger than any other human-sized magnet, built by GE Healthcare, a unit of General Electric Company. A tesla is a large measuring unit of magnetic strength. "This technological leap forward is as revolutionary to the medical community as the transition from radio to television was for society," said Dr. Keith Thulborn, director of the UIC Center for Magnetic Resonance Research, at the facility’s grand opening today. "GE’s magnet is introducing a whole new dimension to imaging by enabling researchers to better understand how the human brain thinks, learns, fights disease and responds to experimental therapies."


"UIC’s new Center for Magnetic Resonance Research featuring GE’s 9.4-tesla magnet will be a premier international center for human brain research," Thulborn said. "What we learn here in Chicago will be shared with researchers and physicians around the world."

A New Dimension in Human Brain Imaging

An MRI machine images internal structures of the body using magnetism, radio waves and a computer. A circular magnet surrounds the patient and creates a strong magnetic field that aligns atoms in the body. A pulse of radio waves then rearranges them, creating a signal that is passed to a computer, producing an image.

The current industry standard for MRI systems is 1.5 tesla, which limits researchers to imaging water molecules. As a result, only anatomical changes can be detected and monitored. By contrast, the 9.4-tesla magnet, which is three times more powerful than current state-of-the-art clinical MRI magnets and more than 100,000 times stronger than the earth’s magnetic field, will enable UIC researchers to detect signals from sodium, phosphorus, carbon, nitrogen, and oxygen -- the metabolic building blocks of brain function and human thought. "Brain scanning is pushed to the limit with the current technology -- we need the sensitivity of the 9.4-tesla magnet to go beyond anatomic imaging to metabolic imaging," Thulborn said. "Metabolism provides the energy that drives brain function and therefore offers the key to uncovering the mysteries of the mind."

Thulborn worked with GE researchers to develop the 9.4-tesla MRI system.

"We developed this 9.4-tesla magnet in conjunction with Dr. Thulborn to provide the research community an in-depth look into how metabolism drives brain function and to provide answers to some of the brain’s greatest mysteries," said Dennis Cooke, vice president of GE Healthcare’s Global MR Business. "This is a one-of-a-kind tool in the hands of UIC’s capable researchers, who aim to identify, develop and apply innovative applications for diagnosing and treating patients." "GE is committed to developing technologies that enable researchers to push the frontiers of medicine and pioneer new treatments."

Applying 9.4-Tesla Research to Human Health and Learning

Specifically, Thulborn will use the 9.4-tesla MRI scanner to help identify and monitor many common conditions and diseases of the brain -- including stroke, Alzheimer’s, autism and mental illness. "The work we’re doing mapping human thoughts brings so much promise to the future of medical research, specifically to our ability to really understand more about brain diseases," said Thulborn. "The medical and social implications of this technology include more personalized healthcare and earlier intervention to prevent disease."

In addition, Thulborn plans to apply the 9.4-tesla system to observing and potentially treating cognitive learning disorders, like attention deficit disorder. "If we can understand how children learn, we can tailor educational programs to better teach them, regardless of whether they have learning difficulties. By understanding the different ways that the brain learns, more efficient and effective learning programs can be produced for such skills as reading, music and mathematics," said Thulborn.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu
http://www.gehealthcare.com

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>