Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC unveils world’s most powerful MRI for decoding the human brain

21.09.2004


The University of Illinois at Chicago unveiled today the world’s most powerful magnetic resonance imaging machine for human studies, capable of imaging not just the anatomy but metabolism within the brain.



This advanced technology ushers in a new age of metabolic imaging that will help researchers understand the workings of the human brain, detect diseases before their clinical signs appear, develop targeted drug therapies for illnesses like stroke and provide a better understanding of learning disabilities.

Central to the technology is a 9.4-tesla magnet, larger than any other human-sized magnet, built by GE Healthcare, a unit of General Electric Company. A tesla is a large measuring unit of magnetic strength. "This technological leap forward is as revolutionary to the medical community as the transition from radio to television was for society," said Dr. Keith Thulborn, director of the UIC Center for Magnetic Resonance Research, at the facility’s grand opening today. "GE’s magnet is introducing a whole new dimension to imaging by enabling researchers to better understand how the human brain thinks, learns, fights disease and responds to experimental therapies."


"UIC’s new Center for Magnetic Resonance Research featuring GE’s 9.4-tesla magnet will be a premier international center for human brain research," Thulborn said. "What we learn here in Chicago will be shared with researchers and physicians around the world."

A New Dimension in Human Brain Imaging

An MRI machine images internal structures of the body using magnetism, radio waves and a computer. A circular magnet surrounds the patient and creates a strong magnetic field that aligns atoms in the body. A pulse of radio waves then rearranges them, creating a signal that is passed to a computer, producing an image.

The current industry standard for MRI systems is 1.5 tesla, which limits researchers to imaging water molecules. As a result, only anatomical changes can be detected and monitored. By contrast, the 9.4-tesla magnet, which is three times more powerful than current state-of-the-art clinical MRI magnets and more than 100,000 times stronger than the earth’s magnetic field, will enable UIC researchers to detect signals from sodium, phosphorus, carbon, nitrogen, and oxygen -- the metabolic building blocks of brain function and human thought. "Brain scanning is pushed to the limit with the current technology -- we need the sensitivity of the 9.4-tesla magnet to go beyond anatomic imaging to metabolic imaging," Thulborn said. "Metabolism provides the energy that drives brain function and therefore offers the key to uncovering the mysteries of the mind."

Thulborn worked with GE researchers to develop the 9.4-tesla MRI system.

"We developed this 9.4-tesla magnet in conjunction with Dr. Thulborn to provide the research community an in-depth look into how metabolism drives brain function and to provide answers to some of the brain’s greatest mysteries," said Dennis Cooke, vice president of GE Healthcare’s Global MR Business. "This is a one-of-a-kind tool in the hands of UIC’s capable researchers, who aim to identify, develop and apply innovative applications for diagnosing and treating patients." "GE is committed to developing technologies that enable researchers to push the frontiers of medicine and pioneer new treatments."

Applying 9.4-Tesla Research to Human Health and Learning

Specifically, Thulborn will use the 9.4-tesla MRI scanner to help identify and monitor many common conditions and diseases of the brain -- including stroke, Alzheimer’s, autism and mental illness. "The work we’re doing mapping human thoughts brings so much promise to the future of medical research, specifically to our ability to really understand more about brain diseases," said Thulborn. "The medical and social implications of this technology include more personalized healthcare and earlier intervention to prevent disease."

In addition, Thulborn plans to apply the 9.4-tesla system to observing and potentially treating cognitive learning disorders, like attention deficit disorder. "If we can understand how children learn, we can tailor educational programs to better teach them, regardless of whether they have learning difficulties. By understanding the different ways that the brain learns, more efficient and effective learning programs can be produced for such skills as reading, music and mathematics," said Thulborn.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu
http://www.gehealthcare.com

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>