Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC unveils world’s most powerful MRI for decoding the human brain

21.09.2004


The University of Illinois at Chicago unveiled today the world’s most powerful magnetic resonance imaging machine for human studies, capable of imaging not just the anatomy but metabolism within the brain.



This advanced technology ushers in a new age of metabolic imaging that will help researchers understand the workings of the human brain, detect diseases before their clinical signs appear, develop targeted drug therapies for illnesses like stroke and provide a better understanding of learning disabilities.

Central to the technology is a 9.4-tesla magnet, larger than any other human-sized magnet, built by GE Healthcare, a unit of General Electric Company. A tesla is a large measuring unit of magnetic strength. "This technological leap forward is as revolutionary to the medical community as the transition from radio to television was for society," said Dr. Keith Thulborn, director of the UIC Center for Magnetic Resonance Research, at the facility’s grand opening today. "GE’s magnet is introducing a whole new dimension to imaging by enabling researchers to better understand how the human brain thinks, learns, fights disease and responds to experimental therapies."


"UIC’s new Center for Magnetic Resonance Research featuring GE’s 9.4-tesla magnet will be a premier international center for human brain research," Thulborn said. "What we learn here in Chicago will be shared with researchers and physicians around the world."

A New Dimension in Human Brain Imaging

An MRI machine images internal structures of the body using magnetism, radio waves and a computer. A circular magnet surrounds the patient and creates a strong magnetic field that aligns atoms in the body. A pulse of radio waves then rearranges them, creating a signal that is passed to a computer, producing an image.

The current industry standard for MRI systems is 1.5 tesla, which limits researchers to imaging water molecules. As a result, only anatomical changes can be detected and monitored. By contrast, the 9.4-tesla magnet, which is three times more powerful than current state-of-the-art clinical MRI magnets and more than 100,000 times stronger than the earth’s magnetic field, will enable UIC researchers to detect signals from sodium, phosphorus, carbon, nitrogen, and oxygen -- the metabolic building blocks of brain function and human thought. "Brain scanning is pushed to the limit with the current technology -- we need the sensitivity of the 9.4-tesla magnet to go beyond anatomic imaging to metabolic imaging," Thulborn said. "Metabolism provides the energy that drives brain function and therefore offers the key to uncovering the mysteries of the mind."

Thulborn worked with GE researchers to develop the 9.4-tesla MRI system.

"We developed this 9.4-tesla magnet in conjunction with Dr. Thulborn to provide the research community an in-depth look into how metabolism drives brain function and to provide answers to some of the brain’s greatest mysteries," said Dennis Cooke, vice president of GE Healthcare’s Global MR Business. "This is a one-of-a-kind tool in the hands of UIC’s capable researchers, who aim to identify, develop and apply innovative applications for diagnosing and treating patients." "GE is committed to developing technologies that enable researchers to push the frontiers of medicine and pioneer new treatments."

Applying 9.4-Tesla Research to Human Health and Learning

Specifically, Thulborn will use the 9.4-tesla MRI scanner to help identify and monitor many common conditions and diseases of the brain -- including stroke, Alzheimer’s, autism and mental illness. "The work we’re doing mapping human thoughts brings so much promise to the future of medical research, specifically to our ability to really understand more about brain diseases," said Thulborn. "The medical and social implications of this technology include more personalized healthcare and earlier intervention to prevent disease."

In addition, Thulborn plans to apply the 9.4-tesla system to observing and potentially treating cognitive learning disorders, like attention deficit disorder. "If we can understand how children learn, we can tailor educational programs to better teach them, regardless of whether they have learning difficulties. By understanding the different ways that the brain learns, more efficient and effective learning programs can be produced for such skills as reading, music and mathematics," said Thulborn.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu
http://www.gehealthcare.com

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>