Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC unveils world’s most powerful MRI for decoding the human brain

21.09.2004


The University of Illinois at Chicago unveiled today the world’s most powerful magnetic resonance imaging machine for human studies, capable of imaging not just the anatomy but metabolism within the brain.



This advanced technology ushers in a new age of metabolic imaging that will help researchers understand the workings of the human brain, detect diseases before their clinical signs appear, develop targeted drug therapies for illnesses like stroke and provide a better understanding of learning disabilities.

Central to the technology is a 9.4-tesla magnet, larger than any other human-sized magnet, built by GE Healthcare, a unit of General Electric Company. A tesla is a large measuring unit of magnetic strength. "This technological leap forward is as revolutionary to the medical community as the transition from radio to television was for society," said Dr. Keith Thulborn, director of the UIC Center for Magnetic Resonance Research, at the facility’s grand opening today. "GE’s magnet is introducing a whole new dimension to imaging by enabling researchers to better understand how the human brain thinks, learns, fights disease and responds to experimental therapies."


"UIC’s new Center for Magnetic Resonance Research featuring GE’s 9.4-tesla magnet will be a premier international center for human brain research," Thulborn said. "What we learn here in Chicago will be shared with researchers and physicians around the world."

A New Dimension in Human Brain Imaging

An MRI machine images internal structures of the body using magnetism, radio waves and a computer. A circular magnet surrounds the patient and creates a strong magnetic field that aligns atoms in the body. A pulse of radio waves then rearranges them, creating a signal that is passed to a computer, producing an image.

The current industry standard for MRI systems is 1.5 tesla, which limits researchers to imaging water molecules. As a result, only anatomical changes can be detected and monitored. By contrast, the 9.4-tesla magnet, which is three times more powerful than current state-of-the-art clinical MRI magnets and more than 100,000 times stronger than the earth’s magnetic field, will enable UIC researchers to detect signals from sodium, phosphorus, carbon, nitrogen, and oxygen -- the metabolic building blocks of brain function and human thought. "Brain scanning is pushed to the limit with the current technology -- we need the sensitivity of the 9.4-tesla magnet to go beyond anatomic imaging to metabolic imaging," Thulborn said. "Metabolism provides the energy that drives brain function and therefore offers the key to uncovering the mysteries of the mind."

Thulborn worked with GE researchers to develop the 9.4-tesla MRI system.

"We developed this 9.4-tesla magnet in conjunction with Dr. Thulborn to provide the research community an in-depth look into how metabolism drives brain function and to provide answers to some of the brain’s greatest mysteries," said Dennis Cooke, vice president of GE Healthcare’s Global MR Business. "This is a one-of-a-kind tool in the hands of UIC’s capable researchers, who aim to identify, develop and apply innovative applications for diagnosing and treating patients." "GE is committed to developing technologies that enable researchers to push the frontiers of medicine and pioneer new treatments."

Applying 9.4-Tesla Research to Human Health and Learning

Specifically, Thulborn will use the 9.4-tesla MRI scanner to help identify and monitor many common conditions and diseases of the brain -- including stroke, Alzheimer’s, autism and mental illness. "The work we’re doing mapping human thoughts brings so much promise to the future of medical research, specifically to our ability to really understand more about brain diseases," said Thulborn. "The medical and social implications of this technology include more personalized healthcare and earlier intervention to prevent disease."

In addition, Thulborn plans to apply the 9.4-tesla system to observing and potentially treating cognitive learning disorders, like attention deficit disorder. "If we can understand how children learn, we can tailor educational programs to better teach them, regardless of whether they have learning difficulties. By understanding the different ways that the brain learns, more efficient and effective learning programs can be produced for such skills as reading, music and mathematics," said Thulborn.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu
http://www.gehealthcare.com

More articles from Information Technology:

nachricht Football through the eyes of a computer
14.06.2018 | Universität Konstanz

nachricht People recall information better through virtual reality, says new UMD study
14.06.2018 | University of Maryland

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>