Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emergency ’shoelacing’ for fractured phone systems

16.09.2004


When a major disaster--man-made or natural--takes down the phone system, who ya gonna call? No one, ’cause the phone’s dead, right? Not if you’re using a novel emergency communications system under development by the Maryland start-up TeleContinuity Inc. With initial support from the National Institute of Standards and Technology’s Advanced Technology Program (ATP), TeleContinuity is creating a "survivable" emergency telephone system back-up network that keeps individuals, companies and government agencies in touch during disasters by seamlessly merging conventional phone lines and the Internet.


Telecontinuity’s system represents a shift from traditional disaster recovery and business continuity solutions that historically have focused on location-based backup facilities and centralized telecom infrastructures.

The terrorist attacks of Sept. 11, 2001, severely disrupted phone service at the attack sites, particularly in New York, where the collapse of the World Trade Center damaged a major local phone central office. Days and even weeks later, many companies and individuals were still without phone service. During this time, however, Internet links, utilizing different lines and network architectures, operated continuously. TeleContinuity’s founders realized that short-term, emergency phone service could be activated quickly, on any scale, by cross-linking surviving phone system links and Internet links as necessary, a technique they called "shoelacing."

The company says its initial version of the software for such an emergency system is designed to reroute a user’s phone service within minutes of a major telephone outage by delivering the call to a remote phone, cellphone or even a computer or PDA. By the end of the ATP project in the Spring of 2005, the company plans to develop an enhanced version of the software that allows administrators and users to monitor and control networks in an emergency with advanced Web-based controls. Ultimately, commercialization of the technology will require a network of hundreds of nodes that can quickly lace together phone and data network lines regardless of where in the system an outage occurs.



Researchers from the University of Maryland and the University of Pittsburgh assisted in developing the system.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>