Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emergency ’shoelacing’ for fractured phone systems

16.09.2004


When a major disaster--man-made or natural--takes down the phone system, who ya gonna call? No one, ’cause the phone’s dead, right? Not if you’re using a novel emergency communications system under development by the Maryland start-up TeleContinuity Inc. With initial support from the National Institute of Standards and Technology’s Advanced Technology Program (ATP), TeleContinuity is creating a "survivable" emergency telephone system back-up network that keeps individuals, companies and government agencies in touch during disasters by seamlessly merging conventional phone lines and the Internet.


Telecontinuity’s system represents a shift from traditional disaster recovery and business continuity solutions that historically have focused on location-based backup facilities and centralized telecom infrastructures.

The terrorist attacks of Sept. 11, 2001, severely disrupted phone service at the attack sites, particularly in New York, where the collapse of the World Trade Center damaged a major local phone central office. Days and even weeks later, many companies and individuals were still without phone service. During this time, however, Internet links, utilizing different lines and network architectures, operated continuously. TeleContinuity’s founders realized that short-term, emergency phone service could be activated quickly, on any scale, by cross-linking surviving phone system links and Internet links as necessary, a technique they called "shoelacing."

The company says its initial version of the software for such an emergency system is designed to reroute a user’s phone service within minutes of a major telephone outage by delivering the call to a remote phone, cellphone or even a computer or PDA. By the end of the ATP project in the Spring of 2005, the company plans to develop an enhanced version of the software that allows administrators and users to monitor and control networks in an emergency with advanced Web-based controls. Ultimately, commercialization of the technology will require a network of hundreds of nodes that can quickly lace together phone and data network lines regardless of where in the system an outage occurs.



Researchers from the University of Maryland and the University of Pittsburgh assisted in developing the system.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>