Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-configuring multifunction mobile terminals

26.08.2004


Software Defined Radios (SDRs) are mobile devices that can be reconfigured over the air. Users could download new services from network operators, and even have voice and email services provided by different networks. The SCOUT project has studied how SDRs will be regulated and marketed.



"From the high level perspective, mobile terminal evolution will drive network evolution," says Markus Dillinger of Siemens AG and SCOUT coordinator. "SDR Mobile terminals will evolve more and more capabilities. You could be connected, simultaneously, to a Wireless LAN network and UMTS or GPRS. I could check my emails whilst receiving phone calls."

The project has considered some of the big questions and started the debate in new areas. These include user, operator and regulator requirements in cellular and ad hoc networks, new business models for the reconfigurable mobile terminal, and procedures for managing the downloaded software on reconfigurable terminals.


"Telecom regulators have an interest in the deregulation of radio spectrum, which in turn could lead to new services and new ways of providing services, and which could drive the EU economy one step further," comments Dillinger."At the moment, frequency bands are allocated according to services, but one might consider refarming spectrum so that, for example, UMTS could operate in GSM frequency bands."

Achieving a coherent European view on frequency spectrum use and deregulation is difficult. Each country has its own issues and regulation policies are markedly different in, say, France, Germany and the UK. Nevertheless, one of the members of the SCOUT consortium was the German Regulator, Regulierungsbehörde für Telekommunikation und Post, which generated a questionnaire directed at manufacturers: what factors are important, what should be controlled by regulators, do regulators have a role to play vis-à-vis SDR? This has opened up the debate to a wider public and put SDR on the agenda.

More than a standard issue

"We’ve also considered so-called adaptive multiphase standards," adds Dillinger. "If you have a mobile terminal that can be reconfigured via the network, why should we have to wait for a fully-matured standard to be drawn up? You could reduce the time to market if a minimal standard was published and, as new parts were agreed, mobile terminals could download upgrades as required."

Agreement on the original GSM standard was relatively quick, because it was a small group of European interests. UMTS has taken longer to become adopted partly because discussions had to take place on a worldwide basis. "The next generation, 4G, may well take even longer unless the approach we take to standards improves. It’s difficult to please everyone and, in practice, not all aspects of the standard [or specification] may be in place within the prescribed discussion period," comments Dillinger.

Cognitive radio is a concept that takes into account the users’ preferences and immediate environment. "The mobile terminal would realise that you don’t want to download large email attachments while you’re in a metro train, and would only download the message headers," says Dillinger. "The terminal could also decide to use a UMTS connection rather than a Wireless LAN connection because it provided a better service or cheaper tariff at the user’s location."

Research shows that one of the most commonly-voiced user preference is the ability to roam across networks. For the SDR, this means not only roaming from one service provider to another, but from one technology to another: Wireless LAN, GSM, GPRS, UMTS, etc. "Roaming would very much be the enabler for SDR flexibility," says Dillinger. "What’s more, if there’s a need, reconfigurability could be used to provide even more services to the end user."

What technology should be used in these SDR mobile terminals? According to Dillinger: "Well-known standards, such as GSM and UMTS, are sufficiently stable and well-understood to have been committed to ASIC [Application Specific Integrated Circuit] early on, the programming of which is usually fixed at the time of manufacture. "But there are other devices, such as DSPs [Digital Signal Processors] and FPLAs [Field-programmable Logic Arrays] that are eminently suited to providing the processing power in an SDR because they can easily be reprogrammed."

The conflict between the classical standards approach and the IETF [Internet Engineering Task Force] still dominates how SDRs will be controlled. "To what extent should SDRs be supported by networks," says Dillinger. "At one extreme, you have UMTS and GSM networks that are controlled by operators, and at the other you have Wireless LAN networks that are privately owned and autonomous. We need to strike a balance that will, ultimately, stimulate economic growth. At the end of the day, however, you have to prove that spectrum deregulation is beneficial."

Contact:

Markus Dillinger
Siemens AG
Gustav-Heinemann Ring 115
D-81730 Munich
Germany
Mobile: +49-172-6953019
Tel: +49-89-63644826
E-mail: markus.dillinger@siemens.com

| CORDIS Wire
Further information:
http://results.cordis.lu/
http://www.siemens.com

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>