Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists help police bust forgers

10.08.2004


Forging wills and bank cheques could now be near impossible thanks to a team of physicists in Rome (Italy). Writing in the latest issue of the Institute of Physics journal, Journal of Optics A, the scientists announce a new technique that can detect forged handwriting better than ever before.

Professor Giuseppe Schirripa Spagnolo, Carla Simonetti and Lorenzo Cozzella from the Università degli Studi “Roma Tre” in Rome, Italy, have devised a forgery detection method that creates a 3D hologram of a piece of handwriting and analyses tiny variations and bumps along its path using two common scientific techniques: virtual reality and image processing.

Until now, detecting forged signatures or handwriting has generally been done by experts who analyse the sequence of individual “strokes” in a piece of handwriting using normal, 2D samples. However, a good forgery can go undetected at the 2D level because it isn’t always easy to determine the exact sequence of strokes.



Schirripa Spagnolo’s team create 3D holograms of the path of a piece of writing, generating an image on a computer that looks like a ditch or furrow. This makes it easy to analyse variations or “bumps” generated by the writer’s pressure on the paper at cross over points, for example the mid-point of the figure eight.

The most common technique used by forgers is tracing, although in real life no two signatures are ever identical. A more sophisticated method is known as the “Freehand Technique” and here the forger copies the general style and characteristics of the handwriting they are trying to copy. However, in both cases it is almost impossible for the forger to reproduce the exact variation of pressure used by the original writer.

Professor Schirripa Spagnolo said: “Using image processing and virtual reality makes it easy to detect the presence of bumps at cross-over points. Finding these bumps allows experts to easily determine the sequence of strokes in a piece of handwriting and the tell tale signs of a forgery or original. Another benefit of this technique is that it doesn’t damage the sample.”

The Rome team used their technique, known as “3D Micro-Profilometry” to analyse hundreds of different handwriting samples made using a variety of different paper types and pens. They have also applied their technique to wills and cheques and successfully detected forgeries in both.

Professor Schirripa Spagnolo said: “We believe this type of 3D micro-profilometry is one of the most promising ways of detecting forged handwriting, and it will be a powerful tool for forensic experts around the world.”

David Reid | alfa
Further information:
http://www.iop.org
http://www.iop.org/EJ/journal/JOptA

More articles from Information Technology:

nachricht Goodbye, login. Hello, heart scan
26.09.2017 | University at Buffalo

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>