Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists help police bust forgers

10.08.2004


Forging wills and bank cheques could now be near impossible thanks to a team of physicists in Rome (Italy). Writing in the latest issue of the Institute of Physics journal, Journal of Optics A, the scientists announce a new technique that can detect forged handwriting better than ever before.

Professor Giuseppe Schirripa Spagnolo, Carla Simonetti and Lorenzo Cozzella from the Università degli Studi “Roma Tre” in Rome, Italy, have devised a forgery detection method that creates a 3D hologram of a piece of handwriting and analyses tiny variations and bumps along its path using two common scientific techniques: virtual reality and image processing.

Until now, detecting forged signatures or handwriting has generally been done by experts who analyse the sequence of individual “strokes” in a piece of handwriting using normal, 2D samples. However, a good forgery can go undetected at the 2D level because it isn’t always easy to determine the exact sequence of strokes.



Schirripa Spagnolo’s team create 3D holograms of the path of a piece of writing, generating an image on a computer that looks like a ditch or furrow. This makes it easy to analyse variations or “bumps” generated by the writer’s pressure on the paper at cross over points, for example the mid-point of the figure eight.

The most common technique used by forgers is tracing, although in real life no two signatures are ever identical. A more sophisticated method is known as the “Freehand Technique” and here the forger copies the general style and characteristics of the handwriting they are trying to copy. However, in both cases it is almost impossible for the forger to reproduce the exact variation of pressure used by the original writer.

Professor Schirripa Spagnolo said: “Using image processing and virtual reality makes it easy to detect the presence of bumps at cross-over points. Finding these bumps allows experts to easily determine the sequence of strokes in a piece of handwriting and the tell tale signs of a forgery or original. Another benefit of this technique is that it doesn’t damage the sample.”

The Rome team used their technique, known as “3D Micro-Profilometry” to analyse hundreds of different handwriting samples made using a variety of different paper types and pens. They have also applied their technique to wills and cheques and successfully detected forgeries in both.

Professor Schirripa Spagnolo said: “We believe this type of 3D micro-profilometry is one of the most promising ways of detecting forged handwriting, and it will be a powerful tool for forensic experts around the world.”

David Reid | alfa
Further information:
http://www.iop.org
http://www.iop.org/EJ/journal/JOptA

More articles from Information Technology:

nachricht Fingerprints of quantum entanglement
16.02.2018 | University of Vienna

nachricht Simple in the Cloud: The digitalization of brownfield systems made easy
07.02.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>