Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fabrication Of High Resolution Printed Circuit Boards

23.07.2004


With ever increasing demands for greater miniaturisation and the use of flexible circuitry the need for improved fabrication methods for high resolution printed circuit boards is becoming more important. By precise control of the etching process inventors from the University of Oxford have been able to make the reliable production of High Resolution Printed Circuit Boards (PCBs) with conductors down to 10 µm wide more of a cost effective reality.



PCBs currently include conductors as narrow as 150 µm, but there is now a requirement for conductors to be as narrow as 25 µm and even down to 10 µm. With current manufacturing techniques it is not possible to attain the required precision especially where the spacing between the conductors varies. The etching rate is highest where the conductors are furthest apart. This leads to over-etching and subsequent under-cutting of the very fine conductors in these areas. The resultant PCB has copper conductors of variable width, and its performance is, therefore, not optimum.

By controlling the etch conditions and the area to be etched the Oxford inventors have reduced the amount of over-etching to an acceptable level and under-cutting has been virtually eliminated. The spaces between the conductors are now all of uniform width, but with more redundant copper remaining on the PCB; the etching has been confined to narrow tracks. In the magnified view of an actual PCB the white areas represent the exposed copper tracks, while the black show the intervening non-conducting substrate.


This technology will benefit many of the applications that now demand PCBs with fine conductors or alternatively require flexible circuitry to facilitate yet further miniaturisation. Typically these include applications such as mobile phones, personal flip-top organisers and inkjet printers.

This invention is now the subject of a patent application and companies interested in developing this technology commercially are invited to contact Isis Innovation.

Kim Bruty | alfa
Further information:
http://www.isis-innovation.com

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>