Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough yields simple way to make microscopic electronics

23.07.2004


Scientists achieve smallest-ever spacing in nanoscale structures

In a breakthrough that could lead to dramatically smaller memory chips and other electronic components, Princeton scientists have found a way to mass produce devices that are so small they are at the limit of what can be viewed by the most powerful microscopes.

The achievement is an advance over current techniques, which require expensive and time-consuming procedures to create anything so small. The technique offers a relatively simple, low-cost production method that may lead to greater memory capacity and lower costs for computers, digital cameras and other devices. In addition, the scientists achieved unprecedented success in packing the minute structures into dense clusters.



The researchers, led by engineering professors Stephen Chou and Stephen Lyon, used a technique known as nanoimprinting, in which they press a mold into a layer of softened plastic on a silicon wafer, making microscopic patterns on the surface of the plastic. The patterns can then be transferred to the silicon where they could form the basis of miniature electronic circuits that store digital information.

The goal of the research was to determine how small and dense a pattern could be pressed into plastic with nanoimprinting, said Chou, who invented nanoimprinting in 1994. "This work really pushes the limit down to a few molecules in size," he said.

The scientists published their results in the June 28 issue of Applied Physics Letters. The other authors of the paper include graduate students Michael Austin, Wei Wu, Mingtao Li and Zhaoning Yu and postdoctoral researchers Haixiong Ge and Daniel Wasserman.

The researchers reported that they created tall, thin ridges only 5 nanometers (5 millionths of a millimeter) wide. The researchers believe they made ridges even narrower than 5 nanometers, but could not confirm the results with existing microscopes. "So we still do not know what the absolute limit is," said Chou.

An important aspect of the achievement is not just the small size of the ridges, but also the amount of space between the ridges, Chou said. The spacing, known as "pitch," ultimately determines the density of electronic memory that can be packed onto a chip. In their published paper, the scientists reported that they achieved a 14-nanometer pitch between ridges. They have since reduced it to 12 nanometers. That spacing is a 20-fold reduction compared to the state-of-the-art techniques used in making today’s most advanced computer chips and would result in 400 times more memory in a two-dimensional memory chip, Chou said.

The current method for making nanoscale devices is to carve each piece individually with a beam of electrons, a technique called electron-beam lithography. That process does not achieve the 14-nanometer pitch of nanoimprinting and requires equipment that is much more expensive than anything used in Chou’s technique.

The key to the result was the collaboration between the labs of Chou and Lyon and the combination of their different areas of expertise. Chou, the pioneer of nanoimprinting, was looking for improvements in the molds he uses for pressing patterns into plastics. His standard method for making a mold was to use electron-beam lithography to carve the desired pattern in a piece of silicon, which is then pressed into plastic. This approach is limited by the narrowness of the electron beam, which carves out a U-shaped channel about 20 nanometers wide.

To improve on this level of precision, Chou turned to Lyon, an expert in a technology called molecular-beam epitaxy, which Lyon uses to grow flat sheets of crystals just a few molecules thick. Members of Lyon’s lab grew alternating layers of two materials until they had a wafer hundreds of layers thick. Researchers in Chou’s lab then cut the wafer, exposing the edges of the layers. They applied a chemical that ate away one of the two materials but not the other. The result was a very fine comb-like pattern in which all the teeth and valleys were perfectly smooth and square with atomic precision. The researchers used this creation as their mold.

This mold-making process, though time-consuming, would need to be done only once in setting up a manufacturing process, said Chou. Once the mold is made, it can be used to make countless copies very rapidly.

The research is the latest in a series of nanoimprinting advances Chou has made in recent years. In 2003, Technology Review magazine, published by the Massachusetts Institute of Technology, identified Chou’s work with nanoimprinting as one of "10 emerging technologies that will change the world." His latest study was funded in part by the Department of Defense Advanced Research Projects Administration.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>