Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Tools to Study Forest Fires, Traffic Jams, & Other Problems

14.07.2004


The control of forest fires has developed into a complex science costing millions of dollars internationally. In the U.S. more than 10 million acres of forest burn annually while, in Canada, over 8,000 fires last year claimed more than 1.5 million hectares. Experts around the world are continuing to research new and innovative ways of battling forest fires.



At Carleton University in Ottawa, Canada, Systems and Computer Engineering Professor Gabriel Wainer has created a software toolkit that can be used to define very complex physical systems. One of the applications is intended to predict the spread of forest fires. Dr. Wainer points out that his simulation research can also be used for other purposes such as predicting traffic flow. "We could use the toolkit to reprogram traffic lights that would move the traffic differently and prevent traffic jams." Another use is the examination of wireless communication patterns e.g. predicting ad hoc communication networks. "We can look at coverage and the shortest pathways to get from point A to point B."

"What we’ve done with the fire spread models is to build on other researchers’ work and design a computer simulation model considering various factors such as wind speed and direction, terrain, slope, and forestfighter participation, in order to study how these factors will affect the spread of a forest fire. You could use this toolkit to predict whether a town is endangered or where to place a forest fire team in order to combat a fire most effectively."


Dr. Wainer says the toolkit is now ready to be used in different applications in collaboration with industry and government agencies. "Of course, we will then have to make more adjustments and changes as we continue to upgrade our product."

Dr. Wainer notes that the fire spread application implemented in his toolkit is a continuation of work that has been conducted for decades. He said it began in 1972 when an American researcher at the USDA Forest Service, R.C. Rothermel developed a mathematical model to predict the spread of forest fires. "He is now viewed as the godfather of this research." Researchers used this model to devise various theories about the best way to examine fire spread. "Researchers at the University of Arizona developed a discrete event fire spread model and we then took their research and condensed about 50 pages of their computer codes into a simple one-page model using higher level language that allows the user to focus more on the actual problem than issues related to computer programming." Dr. Wainer continued: "This toolkit is easier to use as it is simpler to make changes and modify. Practically, someone could add a couple of lines that introduces different factors such as ’What if it is raining?’ or ’What if a firefighter is placed here at this point and time?"

Last year, Carleton University signed an historic Memorandum of Understanding with the University of Arizona to signify an ongoing relationship that would lead to an important exchange of research, faculty, and students in all disciplines. This partnership is the largest Canada-U.S. alliance for both schools. "I already had some dealings with faculty at the U of A before we struck this agreement," points out Dr. Wainer, "but this collaboration is really helping us to move forward in this field of research."

Dr. Wainer recently returned from a European Simulation Symposium that allowed him to compare notes with colleagues in France and Germany. He was hired by Carleton University in 2000 as an Assistant Professor of Systems and Computer Engineering. He completed his Ph.D. at the University of Aix-Marseilles in France and his M.A. at the University of Buenos Aires in Argentina. He is the author of two books "Methodologies and tools for discrete-event simulation" (in Spanish, 2003) and "Real-Time Systems: concepts and applications" (in Spanish, 1997) along with several journal articles.

Dr. Wainer’s research project is just one of a number of amazing research projects now underway at Carleton University in Canada. A major new international facility for underground science called SNOLAB, which will feature the deepest underground laboratory in the world, is now being constructed. It will transform the already renowned Sudbury Neutrino Observatory (SNO) experiment into a permanent, world-class research facility. Carleton is the administrator of this project that will help people better understand the basic nature of our universe and its evolution. As Carleton’s David Sinclair, director and principal investigator of SNOLAB points out: "We can only imagine where the results of this research will take us.” Construction is expected to be completed by 2007. The project is a collaborative effort among six Canadian universities and several international partners.

Carleton University, Canada’s Capital University, has seen its sponsored research grow fourfold in the past four years to the tune of $100 million. Earlier this year, Carleton’s Sprott School of Business won the Institutional Best Overall Research Performance Award from the Administrative Sciences Association of Canada. In October 2002, Alcatel selected Carleton as its first Canadian Alcatel Global Research Partner. A list of Canada’s top 50 research universities published November 4, 2003 in the National Post puts Carleton third among comprehensive universities in Canada in research funding.

| newswise
Further information:
http://www.carleton.ca

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>