Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Tools to Study Forest Fires, Traffic Jams, & Other Problems

14.07.2004


The control of forest fires has developed into a complex science costing millions of dollars internationally. In the U.S. more than 10 million acres of forest burn annually while, in Canada, over 8,000 fires last year claimed more than 1.5 million hectares. Experts around the world are continuing to research new and innovative ways of battling forest fires.



At Carleton University in Ottawa, Canada, Systems and Computer Engineering Professor Gabriel Wainer has created a software toolkit that can be used to define very complex physical systems. One of the applications is intended to predict the spread of forest fires. Dr. Wainer points out that his simulation research can also be used for other purposes such as predicting traffic flow. "We could use the toolkit to reprogram traffic lights that would move the traffic differently and prevent traffic jams." Another use is the examination of wireless communication patterns e.g. predicting ad hoc communication networks. "We can look at coverage and the shortest pathways to get from point A to point B."

"What we’ve done with the fire spread models is to build on other researchers’ work and design a computer simulation model considering various factors such as wind speed and direction, terrain, slope, and forestfighter participation, in order to study how these factors will affect the spread of a forest fire. You could use this toolkit to predict whether a town is endangered or where to place a forest fire team in order to combat a fire most effectively."


Dr. Wainer says the toolkit is now ready to be used in different applications in collaboration with industry and government agencies. "Of course, we will then have to make more adjustments and changes as we continue to upgrade our product."

Dr. Wainer notes that the fire spread application implemented in his toolkit is a continuation of work that has been conducted for decades. He said it began in 1972 when an American researcher at the USDA Forest Service, R.C. Rothermel developed a mathematical model to predict the spread of forest fires. "He is now viewed as the godfather of this research." Researchers used this model to devise various theories about the best way to examine fire spread. "Researchers at the University of Arizona developed a discrete event fire spread model and we then took their research and condensed about 50 pages of their computer codes into a simple one-page model using higher level language that allows the user to focus more on the actual problem than issues related to computer programming." Dr. Wainer continued: "This toolkit is easier to use as it is simpler to make changes and modify. Practically, someone could add a couple of lines that introduces different factors such as ’What if it is raining?’ or ’What if a firefighter is placed here at this point and time?"

Last year, Carleton University signed an historic Memorandum of Understanding with the University of Arizona to signify an ongoing relationship that would lead to an important exchange of research, faculty, and students in all disciplines. This partnership is the largest Canada-U.S. alliance for both schools. "I already had some dealings with faculty at the U of A before we struck this agreement," points out Dr. Wainer, "but this collaboration is really helping us to move forward in this field of research."

Dr. Wainer recently returned from a European Simulation Symposium that allowed him to compare notes with colleagues in France and Germany. He was hired by Carleton University in 2000 as an Assistant Professor of Systems and Computer Engineering. He completed his Ph.D. at the University of Aix-Marseilles in France and his M.A. at the University of Buenos Aires in Argentina. He is the author of two books "Methodologies and tools for discrete-event simulation" (in Spanish, 2003) and "Real-Time Systems: concepts and applications" (in Spanish, 1997) along with several journal articles.

Dr. Wainer’s research project is just one of a number of amazing research projects now underway at Carleton University in Canada. A major new international facility for underground science called SNOLAB, which will feature the deepest underground laboratory in the world, is now being constructed. It will transform the already renowned Sudbury Neutrino Observatory (SNO) experiment into a permanent, world-class research facility. Carleton is the administrator of this project that will help people better understand the basic nature of our universe and its evolution. As Carleton’s David Sinclair, director and principal investigator of SNOLAB points out: "We can only imagine where the results of this research will take us.” Construction is expected to be completed by 2007. The project is a collaborative effort among six Canadian universities and several international partners.

Carleton University, Canada’s Capital University, has seen its sponsored research grow fourfold in the past four years to the tune of $100 million. Earlier this year, Carleton’s Sprott School of Business won the Institutional Best Overall Research Performance Award from the Administrative Sciences Association of Canada. In October 2002, Alcatel selected Carleton as its first Canadian Alcatel Global Research Partner. A list of Canada’s top 50 research universities published November 4, 2003 in the National Post puts Carleton third among comprehensive universities in Canada in research funding.

| newswise
Further information:
http://www.carleton.ca

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>