Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paper-Thin Compound-Eye Camera

09.07.2004


The focal length of a lens means that a camera has to have a certain thickness - or so we might think. Insect eyes show that this need not be the case: A camera chip based on the compound-eye principle can be used for person recognition and is as thin as paper.

If people were insects, books on optics would certainly look different. The camera illustrated as the technical equivalent next to a cross-section of the eye with just one lens, one iris and one retina would not be of the conventional type. A compound camera would have many hundreds of individual eyes. Each light-sensitive unit, consisting of a lens and a photocell, would capture a narrow segment of the environment. All the images together form the complete picture. An insect’s compound eye will never achieve a particularly high optical resolution, but the principle according to which it registers images does possess some advantages, and if these were incorporated in a camera it would be very flat and could cover a wide field of view.

It was precisely these advantages which inspired research scientists at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF to develop their ultra-flat camera system. “Our latest prototypes are thinner than 0.4 millimeters,” emphasizes Andreas Bräuer, who is in charge of the Microoptics unit in Jena. “You can gain a real sense of how thin that is by picking up three sheets of carbon paper between your fingers.” Cameras incorporating conventional “human-eye” optics - such as those used in mobile phones - are at best no thinner than seven millimeters.



This development is targeted at all the applications where the advantages of the stick-on sensors really come to the fore. They are already being produced on wafers like microchips, which is a key requirement if they are one day to be manufactured cost-effectively, on an industrial scale. The next stage of the project is to install the camera in series-production units suitable for use in industry. The most important step will be to connect the lens system with receiver arrays, for example with a CMOS chip. The optical and electronic systems will then be so flat that it will be possible to integrate them in a chipcard with a thickness of 0.8 millimeters. If the chipcard “sees” that it is being used by a stranger it could block the money transfer. Just a vision? Interesting applications are also opening up for driver assistance systems in automobiles: Instead of a gawping camera lens, a discrete gray square would blend in with the car interior. From the driver’s line of vision or eye movements, the compound-eye camera could report to the onboard computer that there is a risk of the driver nodding off. Another possibility: Depending on whether a slightly built woman or a heavy man is sitting in the car, the airbag will activate comparatively gently or strongly.

Johannes Ehrlenspiel | alfa
Further information:
http://www.fraunhofer.de

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>